Communication

Enantioselective Copper-Catalyzed B—H Bond Insertion Reaction of α-Diazoketones

  • Cheng Qingqing ,
  • Xu Huan ,
  • Zhu Shoufei ,
  • Zhou Qilin
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071

Received date: 2015-02-11

  Online published: 2015-03-04

Supported by

Project supported by the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, No. 2012CB821600) and the "111" Project of the Ministry of Education of China (No. B06005).

Abstract

Chiral organoboron compounds are widely used in organic synthesis, materials science, medicine, and other fields, and the development of methodologies for the synthesis of these compounds is a highly active and rewarding area of research. Enantioselective transition-metal-catalyzed carbenoid insertion into heteroatom-hydrogen (X—H) bonds is an efficient strategy for the formation of carbon-heteroatom (C—X) bonds and related chiral centers. The enantioselective boron-hydrogen (B—H) bond insertion reaction provides an ideal approach to chiral organoboron compounds. In our previous study, we developed a copper-catalyzed asymmetric B—H bond insertion reaction of α-diazoesters with phosphine-borane adducts with high yields and high enantioselectivities. Herein, we report the first enantioselective B—H bond insertion reaction of α-diazoketones, another readily available carbene precursors. Firstly, various borane adducts were evaluated, and dimethylphosphine-borane gave the best result. Then, the reaction conditions were carefully optimized, and Cu(MeCN)4PF6/(Ra,S,S)-Ph-SpiroBOX proved to be the most efficient catalyst. Under optimal reaction conditions, the substrate scope of the reaction was investigated. A variety of α-diazoketones underwent the B—H bond insertion reaction affording the desired α-borylketones in good yields with moderate to good enantioselectivities (up to 83% ee). This reaction represents one of the few enantioselective X—H insertion reactions using α-diazoketones as carbene precursors. A typical procedure for the enantioselective copper-catalyzed B—H bond insertion of α-diazoketones is as follows: The powered Cu(MeCN)4PF6 (5.6 mg, 0.015 mmol, 5 mol%) and (Ra,S,S)-Ph-SpiroBOX (4a, 9.2 mg, 0.018 mmol, 6 mol%) were introduced into an oven-dried Schlenk tube in an argon-filled glovebox. After CH2Cl2 (3 mL) was injected into the Schlenk tube, the solution was stirred at 25 ℃ under the argon atmosphere for 2 h. Then dimethylphosphine-borane (2e, 22.8 mg, 0.3 mmol) and 1-diazo-1-phenylpropan-2-one (1a, 48.1 mg, 0.3 mmol) were introduced into the reaction tube subsequently. The resulting mixture was stirred at 25 ℃ until the diazo compound disappeared. After concentration in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/acetone, V:V=6:1) to give (+)-1-(dimethylphosphine- boryl)-1-phenylpropan-2-one (3ae, 52.4 mg, 0.252 mmol, 84% yield) as a colorless oil.

Cite this article

Cheng Qingqing , Xu Huan , Zhu Shoufei , Zhou Qilin . Enantioselective Copper-Catalyzed B—H Bond Insertion Reaction of α-Diazoketones[J]. Acta Chimica Sinica, 2015 , 73(4) : 326 -329 . DOI: 10.6023/A15020125

References

[1] (a) Matteson, D. S. Stereodirected Synthesis with Organoboranes, Springer-Verlag, Berlin, Heidelberg, 1995.
(b) Organoboranes for Syntheses, Eds.: Ramachandran, P. V.; Brown, H. C., ACS Symposium Series 783, American Chemical Society, Washington, DC, 2001.
(c) Adams, J.; Kauffman, M. Cancer Invest. 2004, 22, 304.
(d) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P. Chem. Rev. 2010, 110, 3958.
(e) Jäkle, F. Chem. Rev. 2010, 110, 3985.
(f) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
[2] For reviews, see: (a) Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Syntheses via Boranes, Wiley-Interscience, New York, 1975.
(b) Carroll, A.-M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
(c) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717.
(d) Calow, A. D. J.; Whiting, A. Org. Biomol. Chem. 2012, 10, 5485.
(e) Cid, J.; Gulyás, H.; Carbó, J. J.; Fernández, E. Chem. Soc. Rev. 2012, 41, 3558. For recent examples, see:
(f) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894.
(g) Wu, H.; Radomkit, S.; O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277.
(h) Toure, M.; Chuzel, O.; Parrain, J.-L. J. Am. Chem. Soc. 2012, 134, 17892.
(i) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 11222. (j) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. Nature 2014, 505, 386.
[3] For reviews, see: (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(b) Moody, C. J. Angew. Chem., Int. Ed. 2007, 46, 9148.
(c) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(d) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
(e) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. For recent examples, see:
(f) Song, X.-G.; Zhu, S.-F.; Xie, X.-L.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 2555.
(g) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 2978.
(h) Xu, B.; Zhu, S.-F.; Zhang, Z.-C.; Yu, Z.-X.; Ma, Y.; Zhou, Q.-L. Chem. Sci. 2014, 5, 1442.
(i) Zhu, Y.; Liu, X.; Dong, S.; Zhou, Y.; Li, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2014, 53, 1636.
[4] Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
[5] Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
[6] For preparation and applications of α-diazoketones in catalytic asymmetric reactions, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
(b) Doyle, M. P.; Eismont, M. Y.; Zhou, Q.-L. Russ. Chem. Bull. 1997, 46, 955.
(c) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Watanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417.
(d) Barberis, M.; Pérez-Prieto, J.; Stiriba, S.-E.; Lahuerta, P. Org. Lett. 2001, 3, 3317.
(e) Hwang, C. H.; Chong, Y. H.; Song, S. Y.; Kwak, H. S.; Lee, E. Chem. Commun. 2004, 816.
(f) Suga, H.; Ishimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa, T.; Tsuchida, T.; Kakehi, A.; Baba, T. Org. Lett. 2007, 9, 4359.
(g) Taber, D. F.; Tian, W. J. Org. Chem. 2008, 73, 7560.
(h) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787.
(i) Xu, X.; Qian, Y.; Yang, L.; Hu, W. Chem. Commun. 2011, 47, 797. (j) Qian, Y.; Jing, C.; Liu, S.; Hu, W. Chem. Commun. 2013, 49, 2700.
(k) Taber, D. F.; Paquette, C. M.; Gu, P.; Tian, W. J. Org. Chem. 2013, 78, 9772.
[7] (a) Ge, M.; Corey, E. J. Tetrahedron Lett. 2006, 47, 2319.
(b) Xu, B.; Zhu, S.-F.; Zuo, X.-D.; Zhang, Z.-C.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 3913.
[8] For the development of chiral spiro ligands and catalysts, see: (a) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.
(b) Zhu, S.-F.; Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH, Weinheim, 2011, Chapter 4, p. 137.
(c) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427. (谢建华,周其林, 化学学报, 2012, 70, 1427.)
[9] NaBArF=sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate.
[10] For preparation and applications of amine- and phosphine-borane adducts, see: (a) Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197.
(b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
(c) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
[11] For details, see Table S1 in Supporting Information.
[12] (a) Imamoto, T.; Yamanoi, Y. Chem. Lett. 1996, 705.
(b) Kumaraswamy, G.; Rao, G. V.; RamaKrishna, G. Synlett 2006, 7, 1122.
[13] (a) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
(b) St. Denis, J. D.; Zajdlik, A.; Tan, J.; Trinchera, P.; Lee, C. F.; He, Z.; Adachi, S.; Yudin, A. K. J. Am. Chem. Soc. 2014, 136, 17669 and references therein.

Outlines

/