Research Progress in Hypercrosslinked Microporous Organic Polymers
Received date: 2015-02-03
Online published: 2015-03-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21474033, 51273074, 51173058) and the Program for New Century Excellent Talents in University (No. NCET-10-0389).
Hypercrosslinked microporous polymers are currently an important class of porous polymer materials and receiving great interest due to their advantages such as high surface area, moderate synthetic conditions and diverse building blocks. According to the difference between the synthetic methods, hypercrosslinked polymers are mainly prepared by the following three strategies: polymer precursor post-crosslinking, one-step self-polycondensation of multifunctional monomers and external crosslinker knitting rigid aromatic compounds. In this review, we introduce the development of hypercrosslinked polymer in detail as well as investigate various synthetic methods and polymer networks with controlled micro-morphology, the broad practical and potential applications including gas storage, adsorption, separation and heterogeneous catalysis were also discussed. In the end, we talk about the disadvantage of hypercrosslinked polymers and challenges in the future as well as predict the further development on synthesis and application.
Tan Liangxiao , Tan Bien . Research Progress in Hypercrosslinked Microporous Organic Polymers[J]. Acta Chimica Sinica, 2015 , 73(6) : 530 -540 . DOI: 10.6023/A15020096
[1] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Pouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
[2] Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.
[3] Xing, W.; Zhuo, S.-P.; Gao, X.-L.; Huang, C.-C. Acta Chim. Sinica 2009, 67, 1430. (邢伟, 禚淑萍, 高秀丽, 黄丛聪, 化学学报, 2009, 67, 1430.)
[4] Mui, E. L. K.; Ko, D. C. K.; McKay, G. Carbon 2004, 42, 2789.
[5] Roth, W. J.; Nachtigall, P.; Morris, R. E.; ?ejka, J. Chem. Rev. 2014, 114, 4807.
[6] Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M. Chem. Rev. 2013, 113, 6592.
[7] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[8] Pandey, P.; Katsoulidis, A. P.; Eryazici, I.; Wu, Y.; Kanatzidis, M. G.; Nguyen, S. T. Chem. Mater. 2010, 22, 4974.
[9] Weber, J.; Antonietti, M.; Thomas, A. Macromolecules 2008, 41, 2880.
[10] Wang, H.-X. Petrochemical Technology 2002, 6, 483. (王红霞, 石油化工, 2002, 6, 483.)
[11] Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[12] Jiang, J.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.
[13] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[14] El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
[15] Xu, S.; Luo, Y.; Tan, B. Macromol. Rapid Commun. 2013, 34, 471.
[16] Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. Macromolecules 2011, 44, 2410.
[17] Wood, C. D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E.; Cooper, A. I. Chem. Mater. 2007, 19, 2034.
[18] Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. Chem. Commun. 2010, 46, 4547.
[19] Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. Macromolecules 2010, 43, 8531.
[20] Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. J. Mater. Chem. 2011, 21, 1700.
[21] Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.; Han, B. J. Am. Chem. Soc. 2012, 134, 6084.
[22] Schmidt, J.; Weber, J.; Epping, J. D.; Antonietti, M.; Thomas, A. Adv. Mater. 2009, 21, 702.
[23] Davankov, V. A.; Rogozhin, S. V.; Tsyurupa, M. P. US 3729457, 1971.[Chem. Abstr. 1971, 75, 6841]
[24] Jiang, J.-X.; Cooper, A. In Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, Vol. 293, Ed.: Schröder, M., Springer, Berlin Heidelberg, 2010, Chapter 1.
[25] Tsyurupa, M. P.; Davankov, V. A. React. Funct. Polym. 2006, 66, 768.
[26] Germain, J.; Fréchet, J. M. J.; Svec, F. J. Mater. Chem. 2007, 17, 4989.
[27] Davankov, V. A.; Ilyin, M. M.; Tsyurupa, M. P.; Timofeeva, G. I.; Dubrovina, L. V. Macromolecules 1996, 29, 8398.
[28] Hradil, J.; Králová, E. Polymer 1998, 39, 6041.
[29] ??ábek, K. React. Funct. Polym. 1999, 41, 21.
[30] Ahn, J.-H.; Jang, J.-E.; Oh, C.-G.; Ihm, S.-K.; Cortez, J.; Sherrington, D. C. Macromolecules 2006, 39, 627.
[31] Li, B.; Gong, R.; Luo, Y.; Tan, B. Soft Matter 2011, 7, 10910.
[32] Abbott, L. J.; Colina, C. M. Macromolecules 2014, 47, 5409.
[33] Seo, M.; Kim, S.; Oh, J.; Kim, S.-J.; Hillmyer, M. A. J. Am. Chem. Soc. 2015, 137, 600.
[34] Li, Z.; Wu, D.; Huang, X.; Ma, J.; Liu, H.; Liang, Y.; Fu, R.; Matyjaszewski, K. Energy Environ. Sci. 2014, 7, 3006.
[35] Davankov, V.; Tsyurupa, M.; Ilyin, M.; Pavlova, L. J. Chromatogr. A 2002, 965, 65.
[36] Tsyurupa, M. P.; Davankov, V. A. React. Funct. Polym. 2002, 53, 193.
[37] Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.
[38] Nielsen, C. J.; Herrmann, H.; Weller, C. Chem. Soc. Rev. 2012, 41, 6684.
[39] Martín, C. F.; Stöckel, E.; Clowes, R.; Adams, D. J.; Cooper, A. I.; Pis, J. J.; Rubiera, F.; Pevida, C. J. Mater. Chem. 2011, 21, 5475.
[40] Farha, O. K.; Spokoyny, A. M.; Hauser, B. G.; Bae, Y.-S.; Brown, S. E.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T. Chem. Mater. 2009, 21, 3033.
[41] Chen, S.; Zhang, J.; Wu, T.; Feng, P.; Bu, X. J. Am. Chem. Soc. 2009, 131, 16027.
[42] Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326.
[43] Yang, Y.; Zhang, Q.; Zhang, S.; Li, S. Polymer 2013, 54, 5698.
[44] Yang, Y.; Zhang, Q.; Zhang, S.; Li, S. RSC Adv. 2014, 4, 5568.
[45] Chaikittisilp, W.; Kubo, M.; Moteki, T.; Sugawara-Narutaki, A.; Shimojima, A.; Okubo, T. J. Am. Chem. Soc. 2011, 133, 13832.
[46] Wu, Y.; Wang, D.; Li, L.; Yang, W.; Feng, S.; Liu, H. J. Mater. Chem. A 2014, 2, 2160.
[47] Li, Z.; Wu, D.; Liang, Y.; Fu, R.; Matyjaszewski, K. J. Am. Chem. Soc. 2014, 136, 4805.
[48] Luo, Y.; Zhang, S.; Ma, Y.; Wang, W.; Tan, B. Polym. Chem. 2013, 4, 1126.
[49] Li, B.; Guan, Z.; Yang, X.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. J. Mater. Chem. A 2014, 2, 11930.
[50] Tan, B.-E. Sino-Deutsch Symposium GZ842 on pi - Structured Polymers and Carbon Nanomaterials for Energy Applications, Beijing, 2012, p. 44.
[51] Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem. Int. Ed. 2013, 52, 9900.
[52] Li, L.; Ren, H.; Yuan, Y.; Yu, G.; Zhu, G. J. Mater. Chem. A 2014, 2, 11091.
[53] Woodward, R. T.; Stevens, L. A.; Dawson, R.; Vijayaraghavan, M.; Hasell, T.; Silverwood, I. P.; Ewing, A. V.; Ratvijitvech, T.; Exley, J. D.; Chong, S. Y.; Blanc, F.; Adams, D. J.; Kazarian, S. G.; Snape, C. E.; Drage, T. C.; Cooper, A. I. J. Am. Chem. Soc. 2014, 136, 9028.
[54] Dawson, R.; Ratvijitvech, T.; Corker, M.; Laybourn, A.; Khimyak, Y. Z.; Cooper, A. I.; Adams, D. J. Polym. Chem. 2012, 3, 2034.
[55] Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2012, 134, 10741.
[56] Jing, X.; Zou, D.; Cui, P.; Ren, H.; Zhu, G. J. Mater. Chem. A 2013, 1, 13926.
[57] Yao, S.; Yang, X.; Yu, M.; Zhang, Y.; Jiang, J.-X. J. Mater. Chem. A 2014, 2, 8054.
[58] Yang, X.; Yu, M.; Zhao, Y.; Zhang, C.; Wang, X.; Jiang, J.-X. J. Mater. Chem. A 2014, 2, 15139.
[59] Yang, X.; Yu, M.; Zhao, Y.; Zhang, C.; Wang, X.; Jiang, J.-X. RSC Adv. 2014, 4, 61051.
[60] Zhu, X.; Mahurin, S. M.; An, S.-H.; Do-Thanh, C.-L.; Tian, C.; Li, Y.; Gill, L. W.; Hagaman, E. W.; Bian, Z.; Zhou, J.-H.; Hu, J.; Liu, H.; Dai, S. Chem. Commun. 2014, 50, 7933.
[61] Zhu, J.-H.; Chen, Q.; Sui, Z.-Y.; Pan, L.; Yu, J.; Han, B.-H. J. Mater. Chem. A 2014, 2, 16181.
[62] Saleh, M.; Lee, H. M.; Kemp, K. C.; Kim, K. S. ACS Appl. Mater. Interfaces 2014, 6, 7325.
[63] Meng, Q. B.; Weber, J. ChemSusChem 2014, 7, 3312.
[64] Zhang, Y.; Li, Y.; Wang, F.; Zhao, Y.; Zhang, C.; Wang, X.; Jiang, J.-X. Polymer 2014, 55, 5746.
[65] Wang, S.; Tan, L.; Zhang, C.; Hussain, I.; Tan, B. J. Mater. Chem. A 2015, 3,6542.
[66] Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390.
[67] Xu, S.; Song, K.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272.
[68] Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.
[69] Yang, X.; Li, B.; Majeed, I.; Liang, L.; Long, X.; Tan, B. Polym. Chem. 2013, 4, 1425.
[70] Li, B.; Huang, X.; Gong, R.; Ma, M.; Yang, X.; Liang, L.; Tan, B. Int. J. Hydrogen Energy 2012, 37, 12813.
[71] Li, B.; Yang, X.; Xia, L.; Majeed, M. I.; Tan, B. Sci. Rep. 2013, 3, 2128.
[72] Yang, X.; Song, K.; Tan, L.; Hussain, I.; Li, T.; Tan, B. Macromol. Chem. Phys. 2014, 215, 1257.
[73] Huang, X.-W.; Deng, J.-Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S.-T. Acta Chim. Sinica 2012, 70, 1604. (黄先威, 邓继勇, 许律, 沈平, 赵斌, 谭松庭, 化学学报, 2012, 70, 1604.)
[74] Qiao, Z.; Chai, S.; Nelson, K.; Bi, Z.; Chen, J.; Mahurin, S. M.; Zhu, X.; Dai, S. Nat. Commun. 2014, 5, 3705.
[75] Maya, F.; Svec, F. Polymer 2014, 55, 340.
[76] Shi, S.; Chen, C.; Wang, M.; Ma, J.; Ma, H.; Xu, J. Chem. Commun. 2014, 50, 9079.
[77] Namera, A.; Nakamoto, A.; Saito, T.; Miyazaki, S. J. Sep. Sci. 2011, 34, 901.
[78] Ouyang, Y.; Shi, H.; Fu, R.; Wu, D. Sci. Rep. 2013, 3, 1430.Zeng, Q.; Wu, D.; Zou, C.; Xu, F.; Fu, R.; Li, Z.; Liang, Y.; Su, D. Chem. Commun. 2010, 46, 5927.
/
| 〈 |
|
〉 |