Online Quantification of O2·- and H2O2 and Their Formation Kinetics in Ultraviolet (UV)-Irradiated Nano-TiO2 Suspensions by Continuous Flow Chemiluminescence
Received date: 2015-01-14
Online published: 2015-03-20
Supported by
Project supported by the National Basic Research Program of China (No. 2011CB936001) and the National Natural Science Foundation of China (Nos. 21177138, 21207146, 21477146, 21377142).
O2·- and H2O2, the two reactive oxygen species (ROS) produced in TiO2 photocatalytic reactions, play important roles in the photodegradation of pollutants. In this work, according to the different lifetime of O2·- and H2O2, online quantification of O2·- and H2O2 was successfully achieved based on the two established continuous flow chemiluminescence (CFCL) methods using luminol as the chemiluminescence probe. For O2·-, the CL intensity was detected by mixing the irradiated TiO2 suspension containing O2·- with luminol within 10 s due to its short lifetime and poor stability, and thus the concentration of O2·- was indirectly quantified according to the linear relationship between the CL intensity and the luminol concentration. For H2O2 detection with the luminol/K3Fe(CN)6 system, the CL intensity was detected after the irradiated TiO2 suspension was placed in darkness for 30 min to ensure the complete disappearance of O2·-, and the concentration of H2O2 produced was directly quantified by the calibration curve between the CL intensity and H2O2 concentration. The concentration of O2·- and H2O2 was determined approximately in the range of 7.5~30 nmol/L and 0.60~3.0 μmol/L, and the detection limit was 1.95 nmol/L and 18.0 nmol/L respectively. Based on the proposed models of O2·- and H2O2 formation, the kinetic process of O2·- and H2O2 formation was studied, and both of them followed the increase of exponential decay function. By simulating the time-dependent concentration change of O2·- and H2O2 with their kinetic formulas, the formation rate constants (kf) of O2·- and H2O2 were calculated to be 0.0653 nmol·s-1, and 15.0 nmol·s-1 respectively. The formation rate of H2O2 was higher than that of O2·- in the TiO2 photocatalytic reactions. This work provides us more insight into the formation process of ROS, and may help to improve the photocatalytic efficiency of TiO2 photocatalysis.
Wang Dabin , Zhao Lixia , Guo Lianghong , Zhang Hui , Wan Bin , Yang Yu . Online Quantification of O2·- and H2O2 and Their Formation Kinetics in Ultraviolet (UV)-Irradiated Nano-TiO2 Suspensions by Continuous Flow Chemiluminescence[J]. Acta Chimica Sinica, 2015 , 73(5) : 388 -394 . DOI: 10.6023/A15010036
[1] Kieber, R. J.; Peake, B.; Willey, J. D.; Jacobs, B. Atmos. Environ. 2001, 35, 6041.
[2] Faust, B. C. Environ. Sci. Technol. 1994, 28, 216A.
[3] Aguirre, J.; Ríos-Momberg, M.; Hewitt, D.; Hansberg, W. Trends in Microbiology 2005, 13, 111.
[4] White, E. M.; Vaughan, P. P.; Zepp, R. G. Aquat. Sci. 2003, 65, 402.
[5] Vaughan, P. P.; Blough, N. V. Environ. Sci. Technol. 1998, 32, 2947.
[6] Yin, Y.; Liu, J.; Jiang, G. ACS Nano 2012, 6, 7910.
[7] Li, Y.; Zhang, W.; Niu, J.; Chen, Y. ACS Nano 2012, 6, 5164.
[8] Rose, A. L.; Waite, T. D. Environ. Sci. Technol. 2003, 37, 4877.
[9] Wagner, J. R.; Cadet, J. Acc. Chem. Res. 2010, 43, 564.
[10] Li, T. Y.; Yi, Y.; Xu, H. P. Acta Chim. Sinica 2014, 72, 1079. (李天予, 易宇, 许华平, 化学学报, 2014, 72, 1079.)
[11] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.
[12] Attwood, A. L.; Murphy, D. M.; Edwards, J. L.; Egerton, T. A.; Harrison, R. W. Res. Chem. Intermed. 2003, 29, 449.
[13] Aschauer, U.; Chen, J.; Selloni, A. Phys. Chem. Chem. Phys.2010, 12, 12956.
[14] Turchi, C. S.; Ollis, D. F. J. Catal. 1990, 122, 178.
[15] Li, A. C.; Li, J. F.; Liu, Y. L.; Zhang, J. P.; Zhao, L. P.; Lu, Y. H. Acta Chim. Sinica 2013, 71, 815. (李爱昌, 李健飞, 刘亚录, 张建平, 赵丽平, 卢艳红, 化学学报, 2013, 71, 815.)
[16] Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735.
[17] Chen, C.; Lei, P.; Ji, H.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N. Environ. Sci. Technol. 2004, 38, 329.
[18] Choi, W.; Yeo, J.; Ryu, J.; Tachikawa, T.; Majima, T. Environ. Sci. Technol. 2010, 44, 9099.
[19] Li, Y.; Wen, B.; Yu, C.; Chen, C.; Ji, H.; Ma, W.; Zhao, J. Chem.-Eur. J. 2012, 18, 2030.
[20] Zhang, J.; Nosaka, Y. J. Phys. Chem. C 2013, 117, 1383.
[21] Teranishi, M.; Naya, S.-i.; Tada, H. J. Am. Chem. Soc. 2010, 132, 7850.
[22] Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Environ. Sci. Technol. 1988, 22, 798.
[23] Nosaka, Y.; Yamashita, Y.; Fukuyama, H. J. Phys. Chem. B 1997, 101, 5822.
[24] Miller, C. J.; Rose, A. L.; Waite, T. D. Anal. Chem. 2010, 83, 261.
[25] Tsaplev, Y. B. J. Anal. Chem. 2012, 67, 506.
[26] Wang, D.; Zhao, L.; Guo, L.-H.; Zhang, H. Anal. Chem. 2014, 86, 10535.
[27] Daimon, T.; Hirakawa, T.; Kitazawa, M.; Suetake, J.; Nosaka, Y. Appl. Catal., A: General 2008, 340, 169.
[28] Tsujiko, A.; Itoh, H.; Kisumi, T.; Shiga, A.; Murakoshi, K.; Nakato, Y. J. Phys. Chem. B 2002, 106, 5878.
[29] Connor, P. A.; Dobson, K. D.; McQuillan, A. J. Langmuir 1999, 15, 2402.
[30] Merenyi, G.; Lind, J.; Eriksen, T. E. J. Phys. Chem. 1984, 88, 2320.
[31] Attwood, A. L.; Murphy, D. M.; Edwards, J. L.; Egerton, T. A.; Harrison, R. W. Res. Chem. Intermed. 2003, 29, 449.
[32] Carter, E.; Carley, A. F.; Murphy, D. M. J. Phys. Chem. C 2007, 111, 10630.
[33] Green, J.; Carter, E.; Murphy, D. M. Chem. Phys. Lett. 2009, 477, 340.
[34] Li, Y.-F.; Aschauer, U.; Chen, J.; Selloni, A. Acc. Chem. Res. 2014, 47, 3361.
[35] Hirakawa, T.; Nosaka, Y. Langmuir 2002, 18, 3247.
[36] Li, X.; Chen, C.; Zhao, J. Langmuir 2001, 17, 4118.
[37] Mattioli, G.; Filippone, F.; Amore Bonapasta, A. J. Am. Chem. Soc. 2006, 128, 13772.
/
〈 |
|
〉 |