Preparation, Structure and Properties of Two-dimensional Semiconductor Alloys
Received date: 2015-03-17
Online published: 2015-05-22
Supported by
Project supported by the National Natural Science Foundation of China (NSFC) (Nos. 21373066 and 11304052), the Beijing Nova Program (No. 2015B049) and China Postdoctoral Science Foundation (No. 2013M540900).
Atomically thick two-dimensional (2D) semiconducting materials have attract broad interest because of their low-dimensional effect. Towards optoelectronic applications, 2D semiconducting materials with tunable band structures (such as tunable band gaps, conducting band and valence band positions) are favored. Alloying is a general approach to tune the band structures. Here, this review introduces the research progresses on 2D semiconductor alloys in recent years, including their thermodynamic stability, controlled preparation, structure characterization and property investigation. The transition- metal dichalcogenide monolayer alloys, mainly Mo, W metal elements and S, Se dichalcogenide elements is focused.
Wang Xinsheng , Xie Liming , Zhang Jin . Preparation, Structure and Properties of Two-dimensional Semiconductor Alloys[J]. Acta Chimica Sinica, 2015 , 73(9) : 886 -894 . DOI: 10.6023/A15030187
[1] Song, X. F.; Hu, J. L.; Zeng, H. B. J. Mater. Chem. C 2013, 1, 2952.
[2]
(a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(b) Chen, J.-S.; Wu, B.; Liu, Y.-Q. Acta Chim. Sinica 2014, 72, 359. (陈集思, 武斌, 刘云圻, 化学学报, 2014, 72, 359.)
(c) Zhou, L.; Zhang, L.-M.; Liao, L.; Yang, M.-M.; Xie, Q.; Peng, H.-L.; Liu, Z.-R.; Liu, Z.-F. Acta Chim. Sinica 2014, 72, 289. (周琳, 张黎明, 廖磊, 杨明媚, 谢芹, 彭海琳, 刘志荣, 刘忠范, 化学学报, 2014, 72, 289.)
[3]
(a) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699.
(b) Sorkin, V.; Pan, H.; Shi, H.; Quek, S. Y.; Zhang, Y. W. Crit. Rev. Solid State Mater. Sci. 2014, 39, 319.
(c) Liu, X.; Xu, T.; Wu, X.; Zhang, Z.; Yu, J.; Qiu, H.; Hong, J. H.; Jin, C. H.; Li, J. X.; Wang, X. R.; Sun, L. T.; Guo, W. Nat. Commun. 2013, 4, 1776.
(d) Lin, J.; Cretu, O.; Zhou, W.; Suenaga, K.; Prasai, D.; Bolotin, K. I.; Cuong, N. T.; Otani, M.; Okada, S.; Lupini, A. R.; Idrobo, J. C.; Caudel, D.; Burger, A.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Pennycook, S. J.; Pantelides, S. T. Nat. Nanotechnol. 2014, 9, 436.
[4] Pacilé, D.; Meyer, J. C.; Girit, C. O.; Zettl, A. Appl. Phys. Lett. 2008, 92, 133107.
[5] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271.
[6] Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263.
[7] Akinwande, D.; Petrone, N.; Hone, J. Nat. Commun. 2014, 5, 5678.
[8] Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, 1102.
[9] Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13, 3664.
[10] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8, 497.
[11]
(a) Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501.
(b) Lopez-Sanchez, O.; Llado, E. A.; Koman, V.; Morral, A. F. I.; Radenovic, A.; Kis, A. ACS Nano 2014, 8, 3042.
[12]
(a) Lu, P.; Wu, X.; Guo, W.; Zeng, X. C. Phys. Chem. Chem. Phys. 2012, 14, 13035.
(b) Hui, Y. Y.; Liu, X.; Jie, W.; Chan, N. Y.; Hao, J.; Hsu, Y. T.; Li, L. J.; Guo, W.; Lau, S. P. ACS Nano 2013, 7, 7126.
(c) Jiao, X.-L.; Zhang, Y.-W.; He, C.; Xu, J.-F.; Yang, J.-X.; Hong, Z. L. Mater. Rev. 2012, 26, 12. (焦小亮, 张悦炜, 何潺, 徐剑峰, 杨靖霞, 洪樟连, 材料导报, 2012, 26, 12.)
[13] Tarrio, C.; Schnatterly, S. E. Phys. Rev. B 1989, 40, 7852.
[14] Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805.
[15] Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2012, 12, 5576.
[16] Gutierrez, H. R.; Perea-Lopez, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Nano Lett. 2013, 13, 3447.
[17] Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. ACS Nano 2013, 7, 791.
[18]
(a) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3, 491.
(b) Geim, A. K. Science 2009, 324, 1530.
[19]
(a) Quhe, R. G.; Zheng, J. X.; Luo, G. F.; Liu, Q. H.; Qin, R.; Zhou, J.; Yu, D. P.; Nagase, S.; Mei, W. N.; Gao, Z. X.; Lu, J. Npg Asia Mater. 2012, 4, e6.
(b) Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Castro Neto, A. H.; Lanzara, A. Nat. Mater. 2007, 6, 770.
(c) Zhang, Y.-Q.; Liang, Y.-M.; Zhou, J.-X. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
[20]
(a) Balog, R.; Jorgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S.; Sljivancanin, Z.; Besenbacher, F.; Hammer, B.; Pedersen, T. G.; Hofmann, P.; Hornekaer, L. Nat. Mater. 2010, 9, 315.
(b) Withers, F.; Dubois, M.; Savchenko, A. K. Phys. Rev. B 2010, 82.
[21]
(a) Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877.
(b) Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Nat. Nanotechnol. 2010, 5, 321.
(c) Xie, L. M.; Jiao, L. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 14751.
[22] Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Phys. Rev. Lett. 2012, 108, 155501.
[23] Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Phys. Rev. Lett. 2009, 102, 236804.
[24] Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Phys. Rev. B 2014, 89, 235319.
[25]
(a) Lam, K. T.; Lu, Y. H.; Feng, Y. P.; Liang, G. C. Appl. Phys. Lett. 2011, 98, 022101.
(b) Zhou, Y.; Gao, F.-M; Guo, W.-F; Hou, L. Acta Chim. Sinica 2012, 70, 436. (周友, 高发明, 郭文锋, 侯莉, 化学学报, 2012, 70, 436.)
(c) Yang, J.; Qiu, T.; Shen, C.-Y.; Pan, L.-M. J. Inorg. Mater. 2009, 24, 13. (杨建, 丘泰, 沈春英, 潘丽梅, 无机材料学报, 2009, 24, 13.)
(d) Yang, J.; Qiu, T.; Shen, C.-Y. Acta Phys. Chim. Sin. 2005, 24, 1373. (杨建, 丘泰, 沈春英, 物理化学学报, 2005, 24, 1373.)
[26] Peng, Q.; De, S. Physica E 2012, 44, 1662.
[27] Tomashik, V. Refractory Metal Systems 2009, 11E1, 444.
[28]
(a) Komsa, H. P.; Krasheninnikov, A. V. J. Phys. Chem. Lett. 2012, 3, 3652.
(b) Ajalkar, B. D.; Mane, R. K.; Sarwade, B. D.; Bhosale, P. N. Sol. Energy Mater. Sol. Cells 2004, 81, 101.
[29] Yoon, D.; Cheong, H. In Raman Spectroscopy for Nanomaterials Characterization, Eds.: Kumar, C. S., Springer, Heidelberg, 2012, p. 191.
[30] Manzke, R.; Skibowski, M. In Electronic Structure of Solids: Photoemission Spectra and Related Data' of Landolt——Börnstein - Group III Condensed Matter, Subvolume B, Vol. 23b, Eds.: Goldmann, A., Springer, Heidelberg, 1994, pp. 131~142.
[31] Manzke, R.; Skibowski, M. In Electronic Structure of Solids: Photoemission Spectra and Related Data' of Landolt-Börnstein——Group III Condensed Matter, Subvolume B, Vol. 23b, Eds.: Goldmann, A., Springer, Heidelberg, 1994, pp. 104~111.
[32] Kück, S.; Madelung, O.; Werheit, H.; Rössler, U.; Schulz, M. In Electronic Structure of Solids: Photoemission Spectra and Related Data' of Landolt-Börnstein——Group III Condensed Matter, Subvolume D, Vol. 41D, Springer, Heidelberg, 2000.
[33] Chiang, T.; Himpsel, F. In Electronic Structure of Solids: Photoemission Spectra and Related Data' of Landolt-Börnstein——Group III Condensed Matter, Subvolume A, Vol. 23a, Eds.: Goldmann, A.; Koch, E.-E., Springer, Heidelberg, 1989, pp. 30~34.
[34] Durgun, E.; Tongay, S.; Ciraci, S. Phys. Rev. B 2005, 72, 075420.
[35]
(a) Zhang, M.; Wu, J.; Zhu, Y.; Dumcenco, D. O.; Hong, J.; Mao, N.; Deng, S.; Chen, Y.; Yang, Y.; Jin, C.; Chaki, S. H.; Huang, Y. S.; Zhang, J.; Xie, L. ACS Nano 2014, 8, 7130.
(b) Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y. S.; Xie, L. ACS Nano 2013, 7, 4610.
(c) Feng, Q.; Zhu, Y.; Hong, J.; Zhang, M.; Duan, W.; Mao, N.; Wu, J.; Xu, H.; Dong, F.; Lin, F.; Jin, C.; Wang, C.; Zhang, J.; Xie, L. Adv. Mater. 2014, 26, 2648.
[36] Porter, D. A.; Easterling, K. E.; Sherif, M. Phase Transformations in Metals and Alloys, (Revised Reprint), CRC press, Florida, 2011, pp. 10~13.
[37] Kang, J.; Tongay, S.; Li, J. B.; Wu, J. Q. J. Appl. Phys. 2013, 113, 140703.
[38] Gan, L. Y.; Zhang, Q.; Zhao, Y. J.; Cheng, Y.; Schwingenschlogl, U. Sci. Rep. 2014, 4, 6691.
[39]
(a) Dumcenco, D. O.; Su, Y. C.; Wang, Y. P.; Chen, K. Y.; Huang, Y. S.; Ho, C. H.; Tiong, K. K. In Solid Compounds of Transition Elements, Vol. 170, Eds.: Bobet, J. L.; Chevalier, B.; Fruchart, D., Trans Tech Publications, Switzerland, 2011, pp. 55~59.
(b) Dumcenco, D. O.; Chen, K. Y.; Wang, Y. P.; Huang, Y. S.; Tiong, K. K. J. Alloys Compd. 2010, 506, 940.
[40] Ho, C. H.; Huang, Y. S.; Liao, P. C.; Tiong, K. K. J. Phys. Chem. Solids 1999, 60, 1797.
[41] Schmidt, P.; Schmidt, M.; Binnewies, M.; Glaum, R. Chemical Vapor Transport Reactions——Methods, Materials, Modeling, INTECH Open Access Publisher, 2013, Chapter 9, pp. 227~229.
[42] Tongay, S.; Narang, D. S.; Kang, J.; Fan, W.; Ko, C. H.; Luce, A. V.; Wang, K. X.; Suh, J.; Patel, K. D.; Pathak, V. M.; Li, J. B.; Wu, J. Q. Appl. Phys. Lett. 2014, 104, 012101.
[43]
(a) Zheng, S.; Sun, L.; Yin, T.; Dubrovkin, A. M.; Liu, F.; Liu, Z.; Shen, Z. X.; Fan, H. J. Appl. Phys. Lett. 2015, 106, 063113.
(b) Gong, Y.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J.; Najmaei, S.; Lin, Z.; Elias, A. L.; Berkdemir, A.; You, G.; Terrones, H.; Terrones, M.; Vajtai, R.; Pantelides, S. T.; Pennycook, S. J.; Lou, J.; Zhou, W.; Ajayan, P. M. Nano Lett. 2014, 14, 442.
(c) Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; Ma, L.; Fan, X.; Wang, X.; Xu, J.; Pan, A.; Duan, X. J. Am. Chem. Soc. 2014, 136, 3756.
[44] Gulbransen, E. A.; Andrew, K. F.; Brassart, F. A. J. Electrochem. Soc. 1963, 110, 242.
[45] Li, B.; Huang, L.; Zhong, M.; Huo, N.; Li, Y.; Yang, S.; Fan, C.; Yang, J.; Hu, W.; Wei, Z.; Li, J. ACS Nano 2015, 9, 1257.
[46] Su, S. H.; Hsu, Y. T.; Chang, Y. H.; Chiu, M. H.; Hsu, C. L.; Hsu, W. T.; Chang, W. H.; He, J. H.; Li, L. J. Small 2014, 10, 2589.
[47]
(a) Ramasubramaniam, A. Phys. Rev. B 2012, 86, 115409.
(b) Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Phys. Rev. B 2013, 88, 045318.
(c) Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Nat. Mater. 2013, 12, 207.
[48] Ho, C. H.; Wu, C. S.; Huang, Y. S.; Liao, P. C.; Tiong, K. K. J. Phys.: Condens. Matter. 1998, 10, 9317.
[49] Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695.
[50] Chen, Y.; Dumcenco, D. O.; Zhu, Y.; Zhang, X.; Mao, N.; Feng, Q.;hang, M.; Zhang, J.; Tan, P. H.; Huang, Y. S.; Xie, L. Nanoscale 2014, 6, 2833.
[51] Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A.; Tran, T.; Wurch, M.; Nguyen, A.; Klee, V.; Bobek, S.; Sun, D.; Heinz, T. F.; Rahman, T. S.; Kawakami, R.; Bartels, L. Adv. Mater. 2014, 26, 1399.
[52] Chang, I. F.; Mitra, S. S. Phys. Rev. 1968, 172, 924.
[53] Xi, J. Y.; Zhao, T. Q.; Wang, D.; Shuai, Z. G. J. Phys. Chem. Lett. 2014, 5, 285.
[54] Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; Long, G.; Shi, Y.; Sun, L.; Wang, J.; Wang, X. Nat. Commun. 2013, 4, 2642.
[55] Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Nano Lett. 2013, 13, 2615.
[56] Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. Nano Lett. 2014, 14, 1714.
/
〈 |
|
〉 |