Article

Investigation into Electrogenerated Chemiluminescence Behavior of Tris(bipyridine)ruthenium(II)/silica Nanoparticles Electrocatalyzed by Cu(tris(hydroxymethyl)aminomethane)42+ Complex

  • Li Yuan ,
  • Liu Wenna ,
  • Zheng Xingwang
Expand
  • School of Chemistry & Chemical Engineering, Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an 710062, China

Received date: 2015-01-16

  Online published: 2015-05-22

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.Project supported by the National Natural Science Foundation of China (No. 21375085).

Abstract

Although many electrogenerated chemiluminescence (ECL) co-reactants, such as tripropylamine (TPA) and oxalic acid, have been applied in Tris(bipyridine)ruthenium(II)/silica nanoparticles (Ru(bpy)32+/silica nanoparticles, RuS NPs) ECL system, the poor diffusion behavior of these co-reactants in silica matrix as well as its toxic disadvantages limited their further ECL analytical application. Therefore, it was very meaningful to explore a new type of co-reactant in RuS NPs ECL system for obtaining a good analytical result. In this paper, we found that the electrochemical oxidation reaction of H2O could be catalyzed by Cu(Tris)42+ (Tris(hydroxymethyl)aminomethane, Tris) complexes and produce the intermediate (·OH). The ECL of Ru(bpy)32+-doped RuS NPs could be induced by ·OH and produce the strong ECL signals. The possible ECL mechanism was investigated by ultraviolet-visible (UV-vis) absorption spectrum, electrochemical methods and ECL methods. It may be that when Cu2+ was added into the Tris-HCl solution, it would combine with the amino of Tris to form Cu(Tris)42+ complexes; in the subsequent ECL reaction process, Ru(bpy)32+ inside RuS NPs near by the surface of electrode was firstly oxidized to Ru(bpy)33+. At the same time, the reduction reaction of Ru(bpy)33+ would catalyze the oxidization of Cu(Tris)42+ to generate the Cu(Tris)43+; then, the reduction of Cu(Tris)43+ would catalyze the electrochemical oxidation reaction of H2O and was accompanied by the generation of O2 and strong reducing agents (·OH). On the one hand, the silica substrate could protect Ru(bpy)32+-doped RuS NPs from O2 interference, and avoid the quenching effect of Ru(bpy)32+ ECL induced by O2. On the other hand, ·OH can rapidly go through the silica substrate and react with the oxidation state of Ru(bpy)33+ inside of RuS NPs because it is a kind of neutral group. Based on these findings, we develop a new ECL method for sensitive detection of Cu2+ using H2O molecular as a co-reacant. Under the optimal conditions, the proposed method achieved a detection limit of 1.0×10-7 mol/L with RSD of less than 5.0%.

Cite this article

Li Yuan , Liu Wenna , Zheng Xingwang . Investigation into Electrogenerated Chemiluminescence Behavior of Tris(bipyridine)ruthenium(II)/silica Nanoparticles Electrocatalyzed by Cu(tris(hydroxymethyl)aminomethane)42+ Complex[J]. Acta Chimica Sinica, 2015 , 73(7) : 749 -754 . DOI: 10.6023/A15010047

References

[1] Wang, L.; Wang, K. M.; Santra, S.; Zhao, X. J.; Hilliard, L. R.; Smith, J. E.; Wu, J. R.; Tan, W. H. Anal. Chem. 2006, 78, 646.
[2] Bagwe, R. P.; Yang, C. Y.; Hilliard, L. R.; Tan, W. H. Langmuir 2004, 20, 8336.
[3] Ye, Z. Q.; Tan, M. Q.; Wang, G. L.; Yuan, J. L. Anal. Chem. 2004, 76, 513.
[4] Vallet-Regí, M.; Balas, F.; Arcos, D. Angew. Chem. Int. Ed. 2007, 46, 7548.
[5] Hun, X.; Zhang, Z. J. Sens. Actuators, B 2008, 131, 403.
[6] Cai, Z. M.; Lin, Z. J.; Chen, X. M.; Jia, T. T.; Yu, P.; Chen, X. Luminescence 2010, 24, 367.
[7] Yu, F. L.; Li, G.; Mao, C. M. Electrochem. Commun. 2011, 13, 1244.
[8] Qian, J.; Zhou, Z. X.; Cao, X. D.; Liu, S. Q. Anal. Chim. Acta 2010, 665, 32.
[9] Yang, X.; Yuan, R.; Chai, Y. Q.; Zhuo, Y.; Mao, L.; Yuan, S. R. Biosens. Bioelectron. 2010, 25, 1851.
[10] Chang, Z.; Zhou, J. M.; Zhao, K. Electrochim. Acta 2006, 52, 575.
[11] Sun, Q. X.; Zou, G. Z.; Zhang, X. L. Electroanalysis 2011, 23, 2693.
[12] (a) Richter, M. M.; Chem. Rev. 2004, 104, 3003;
(b) Gerardi, R. D.; Barnett, N. W.; Lewis, S. W. Anal. Chim. Acta 1999, 378, 1;
(c) Lee, W. Y. Mikrochim. Acta 1997, 127, 19;
(d) Knight, A. W.; Greenway, G. M. Analyst 1996, 121, R101.
[13] Ege, D.; Becker, W. G.; Bard, A. J. Anal. Chem. 1984, 56, 2413.
[14] Leland, J. K.; Powell, M. J. J. Electrochem. Soc. 1990, 137, 3127.
[15] Blackburn, G. F.; Shah, H. P.; Kenten, J. H.; Leland, J.; Kamin, R. A.; Link, J.; Peterman, J.; Powell, M. J.; Shah, A.; Talley, D. B.; Tyagi, S. K.; Wilkins, E.; Wu, T. J.; Massey, R. J. Clin. Chem. 1991, 37, 1534.
[16] Deaver, D. R. Nature 1995, 377, 758.
[17] Huazhong Normal University, Northeast Normal University, Shaanxi Normal University, Beijing Normal University, Analytical Chemistry, 3rd ed., Higher Education Press, Beijing, 2005, p. 296. (华中师范大学, 东北师范大学, 陕西师范大学, 北京师范大学, 分析化学上册(第三版), 高等教育出版社, 北京, 2005, p. 296.)
[18] Chen, J. W.; Hu, T. X. Acta Biochim. Biophys. Sin. 1992, 19(2), 136. (陈季武, 胡天喜, 生物化学与生物物理进展, 1992, 19(2), 136.)
[19] Zhang, L. N.; Guo, Z. H.; Zheng, X. W.; Wang, R.; Meng, M. R.; Qu, Y. J.; Liu, Z. H.; Yao, S. Acta Chim. Sinica 2011, 69(20), 2486. (张李娜, 郭志慧, 郑行望, 汪绒, 孟美荣, 屈颖娟, 刘全宏, 姚莎, 化学学报, 2011, 69(20), 2486.)

Outlines

/