Recent Advance in Organic Porous Polycarbazoles: Preparation and Properties
Received date: 2015-02-11
Online published: 2015-04-13
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21274033 and 21374024) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2014CB932200).
Polycarbazole has rigid backbone and conjugated electron rich system, which are beneficial to form permanent porous materials, enhance interactions between adsorbate and adsorbent, and exhibit intrinsic optical and electrical performance. As a novel kind of porous materials, organic porous polycarbazoles possess high specific surface area and permanent porosity, which have drawn great interests owing to the advantages in synthetic diversity, pore size controllability, optical and electrical properties. The preparation of organic porous polycarbazoles has recently been developed rapidly because of their great potential applications in gas storage, separation, vapor adsorption, catalysis, sensing and organic electronics. As for preparative methods of the organic porous polycarbazoles, carbazole-based oxidative coupling polymerization and Friedel-Crafts alkylation are the representative methods. Some other synthetic methods such as nitrile-based trimerization of aromatic nitriles and classic carbon-carbon coupling polymerization. Recently, a facile method for the preparation of hypercrosslinked organic porous polycarbazoles via FeCl3-promoted one-step oxidative coupling reaction and Friedel-Crafts alkylation in one pot has also been reported. According to the summarized results of porosity and adsorption performance, micro/mesoporous conjugated polycarbazole with high porosity can be obtained via molecular structure tuning. The Brunauer-Emmett-Teller specific surface area of porous polycarbazole is up to 2440 m2·g-1. The adsorption performance of some organic porous polycarbazoles not only can be comparable with that of the known porous organic polymers with ultrahigh specific surface area, such as PAF-1 and PNN-4, but also can be competitive with the best reported results for porous organic polymers, activated carbons, and metal-organic frameworks under the same conditions. Herein, recent advance such as synthetic methods, properties, and applications in organic porous polycarbazoles has been reviewed.
Key words: carbazole; porous organic polymer; preparation; property and application
Cao Qiang , Chen Qi , Han Baohang . Recent Advance in Organic Porous Polycarbazoles: Preparation and Properties[J]. Acta Chimica Sinica, 2015 , 73(6) : 541 -556 . DOI: 10.6023/A15020126
[1] Schüth, F.; Sing, K. S. W.; Weitkamp, J. Handbook of Porous Solids, Wiley-VCH, Weinheim, 2002.
[2] Xiong, J.-F.; Xiao, P.; Wu, Q.; Wang, X.-Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 433. (熊静芳, 肖佩, 吴强, 王喜章, 胡征, 化学学报, 2014, 72, 433.)
[3] Sui, D.; Huang, Y.; Huang, L.; Zhang, Y.; Chen, Y.-S. Acta Chim. Sinica 2014, 72, 382. (随东, 黄毅, 黄璐, 张昳, 陈永胜, 化学学报, 2014, 72, 382.)
[4] Xiang, Z.-H.; Cao, D.-P. J. Mater. Chem. A 2013, 1, 2691.
[5] Zhang, Y. G.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
[6] Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[7] Cooper, A. I. CrystEngComm 2013, 15, 1483.
[8] Feng, X.; Ding, X.-S.; Jiang, D.-L. Chem. Soc. Rev. 2012, 41, 6010.
[9] Cote, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, O. M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[10] Zhang, T.-T.; Wang, H.-T.; Ma, H.-P.; Sun, F.-X.; Cui, X.-Q.; Zhu, G.-S. Acta Chim. Sinica 2013, 71, 1598. (张婷婷, 王海涛, 马和平, 孙福兴, 崔小强, 朱广山, 化学学报, 2013, 71, 1598.)
[11] McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.
[12] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[13] Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Chem. Commun. 2004, 230.
[14] Xu, Y.-H.; Jin, S.-B.; Xu, H.; Nagai, A.; Jiang, D.-L. Chem. Soc. Rev. 2013, 42 8012.
[15] Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[16] Tsyurupa, M. P.; Davankov, V. A. React. Funct. Polym. 2006, 66, 768.
[17] Ben, T.; Qiu, S.-L. CrystEngComm 2013, 15, 17.
[18] Ben, T.; Ren, H.; Ma, S.-Q.; Cao, D.-P.; Lan, J.-H.; Jing, X.-F.; Wang, W.-C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.-L.; Zhu, G.-S. Angew. Chem., Int. Ed. 2009, 48, 9457.
[19] Wang, W.; Yan, Z.-J.; Yuan, Y.; Sun, F.-X.; Zhao, M.; Ren, H.; Zhu, G.-S. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[20] Lu, W. G.; Yuan, D. Q.; Zhao, D.; Schilling, C. I.; Plietzsch, O.; Muller, T.; Bräse, S.; Guenther, J.; Blümel, J.; Krishna, R.; Li, Z.; Zhou, H. C. Chem. Mater. 2010, 22, 5964.
[21] Liu, D.-P.; Chen, Q.; Zhao, Y.-C.; Han, B.-H. Chin. Sci. Bull. 2013, 58, 2352. (刘德鹏, 陈琦, 赵彦超, 韩宝航, 科学通报, 2013, 58, 2352.)
[22] Zhao, Y.-C.; Chen, Q.; Han, B.-H. Sci. China Phys. Mech. Astron. 2011, 41, 1029. (赵彦超, 陈琦, 韩宝航, 中国科学: 物理学 力学 天文学, 2011, 41, 1029.)
[23] Haszeldine, R. S. Science 2009, 325, 1647.
[24] Dawson, R.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Macromolecules 2009, 42, 8809.
[25] Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
[26] Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.-G.; Han, B.-H. J. Am. Chem. Soc. 2012, 134, 6084.
[27] Chen, Q.; Liu, D.-P.; Luo, M.; Feng, L.-J.; Zhao, Y.-C.; Han, B.-H. Small 2014, 10, 308.
[28] Chen, Q.; Liu, D.-P.; Zhu, J.-H.; Han, B.-H. Macromolecules 2014, 47, 5926.
[29] Feng, L.-J.; Chen, Q.; Zhu, J.-H.; Liu, D.-P.; Zhao, Y.-C.; Han, B.-H. Polym. Chem. 2014, 5, 3081.
[30] Qiao, S.-L.; Du, Z.-K.; Yang, R.-Q. J. Mater. Chem. A 2014, 2, 1877.
[31] Zhang, Y.-W.; Sigen, A.; Zou, Y.-C.; Luo, X.-L.; Li, Z.-P.; Xia, H.; Liu, X.-M.; Mu, Y. J. Mater. Chem. A 2014, 2, 13422.
[32] Zhang, X.; Lu, J.-Z.; Zhang, J. Chem. Mater. 2014, 26, 4023.
[33] Gu, C.; Chen, Y.-C.; Zhang, Z.-B.; Xue, S.-F.; Sun, S.-H.; Zhang, K.; Zhong, C.-M.; Zhang, H.-H.; Pan, Y.-Y.; Lv, Y.; Yang, Y.-Q.; Li, F.-H.; Zhang, S.-B.; Huang, F.; Ma, Y.-G. Adv. Mater. 2013, 25, 3443.
[34] Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.-H.; Jiang, D.-L. Angew. Chem., Int. Ed. 2014, 53, 4850.
[35] Katsoulidis, A. P.; Dyar, S. M.; Carmieli, R.; Malliakas, C. D.; Wasielewski, M. R.; Kanatzidis, M. G. J. Mater. Chem. A 2013, 1, 10465.
[36] Preis, E.; Widling, C.; Brunklaus, G.; Schmidt, J.; Thomas, A.; Scherf, U. ACS Macro. Lett. 2013, 2, 380.
[37] Zhu, J.-H.; Chen, Q.; Sui, Z.-Y.; Pan, L.; Yu, J.-G.; Han, B.-H. J. Mater. Chem. A 2014, 2, 16181.
[38] Pan, L.; Chen, Q.; Zhu, J.-H.; Yu, J.-G.; He, Y.-J.; Han, B.-H. Polym. Chem. 2015, 6, 2478.
[39] Zhu, X.; Mahurin, S. M.; An, S. H.; DoThanh, C.; Tian, C. C.; Li, T. K.; Gill, L. W.; Hagaman, E. W.; Bian, Z. J.; Zhou, J. H.; Hu, J.; Liu, H. L.; Dai, S. Chem. Commun. 2014, 50, 7933.
[40] Saleh, M.; Lee, H. M.; Kemp, K. C.; Kim, S. K. ACS Appl. Mater. Interfaces 2014, 6, 7325.
[41] Liu, Y.; Wu, S. F.; Wang, G.; Yu, G. P.; Guan, J. G.; Pan, C. Y.; Wang, Z. G. J. Mater. Chem. A 2014, 2, 7795.
[42] Wu, S. F.; Liu, Y.; Yu, G. P.; Guan, J. G.; Pan, C. Y.; Du, Y.; Xiong, X.; Wang, Z. G. Macromolecules 2014, 47, 2875.
[43] Liu, X. M.; Xu, Y. H.; Jiang, D. L. J. Am. Chem. Soc. 2012, 134, 8738.
[44] Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353.
[45] Rabbani, M. G.; El-Kaderi, H. M. Chem. Mater. 2011, 23, 1650.
[46] Ghanem, B. S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M.; Budd, P. M.; Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B. Macromolecules 2010, 43, 5287.
[47] Yuan, D. Q.; Lu, W. G.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23, 3723.
[48] Lu, W.; Yuan, D.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.-C. J. Am. Chem. Soc. 2011, 133, 18126.
[49] Ben, T.; Pei, C.; Zhang, D.; Xu, J.; Deng, F.; Jing, X.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.
[50] Dawson, R.; Stockel, E.; Holst, J. R.; Adams, D. J.; Cooper, A. I. Energy Environ. Sci. 2011, 4, 4239.
[51] Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875.
[52] Texier-Mandoki, N.; Dentzer, J.; Piquero, T.; Saadallah, S.; David, P.; Vix-Guterl, C. Carbon 2004, 42, 2744.
[53] Yang, Z. X.; Xia, Y. D.; Mokaya, R. J. Am. Chem. Soc. 2007, 129, 1673.
[54] Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Ferey, G. Angew. Chem., Int. Ed. 2006, 45, 8227.
[55] Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939.
/
〈 |
|
〉 |