Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air
Received date: 2015-03-31
Online published: 2015-06-02
Supported by
Project supported by the National Basic Research Program of China (No. 2013CB934500) and the National Natural Science Foundation of China (Nos. 61390503, 61325021, 91223204, 91323304).
Monolayer molybdenum disulfide is a novel two-dimensional material beyond graphene. It is a direct band gap semiconductor with excellent electrical and optical properties, promising wide application in nanoelectronics and optoelectronics, thus has drawn much attention recently. In this paper, we investigate the enhancement of photoluminescence of monolayer molybdenum disulfide by annealing in air. Monolayer molybdenum disulfide samples were prepared by mechanical exfoliation and chemical vapor deposition with molybdenum oxide and sulfur as sources, and argon as carrier gas. We found that air annealing for several minutes can distinctly enhance the photoluminescence intensity of A exciton by an order of magnitude, which is much better than annealing in argon. The blue shift of A exciton peak is observed after air annealing for all the monolayer molybdenum disulfide samples prepared by different methods above. We also found that this phenomenon widely exists in samples with different substrates like silicon dioxide and sapphire. Electrical transport measurements were carried out and indicate that the carrier mobility of monolayer molybdenum disulfide is largely reduced after annealing in air, which might mean the formation of considerable defects. This phenomenon is believed to be due to the doping effect caused by adsorption of oxygen, which is bonded to the defects after annealing. As acceptors, these oxygen dopants change the distribution of trions and neutral excitons, resulting in less tritons but more neutral excitons. Neutral excitons yield much higher quantum efficiency. As a comparison, we carried out control experiments in which annealing was in NH3 atmosphere. We found that photoluminescence is red shifted and can be quenched. This research results give a simple and effective method to enhance the photoluminescence of monolayer molybdenum disulfide.
Key words: molybdenum disulfide; photoluminescence; exciton; charge transfer
Shen Cheng , Zhang Jing , Shi Dongxia , Zhang Guangyu . Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air[J]. Acta Chimica Sinica, 2015 , 73(9) : 954 -958 . DOI: 10.6023/A15030220
[1] Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699.
[2] Zhang, Y.-Q.; Liang, Y.-M.; Zhou, J.-X. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
[3] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[4] Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263.
[5] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271.
[6] Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805.
[7] Julien, C.; Sekine, T.; Balkanski, M. Solid State Ionics 1991, 48, 225.
[8] Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. ACS Nano 2012, 6, 5635.
[9] Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. Y.; Zhang, Q.; Zhang, H. Small 2012, 8, 63.
[10] Mak, K. F.; He, K.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Nat. Mater. 2013, 12, 207.
[11] Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; You, L.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2013, 13, 2831.
[12] Ross, J. S.; Wu, S.; Yu, H.; Ghimire, N. J. Jones, A. M.; Aivazian, G.; Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X. Nat. Commun. 2013, 4, 1474.
[13] Dolui, K.; Rungger, I.; Pemmaraju, C. D.; Sanvito, S. Phys. Rev. B 2013, 88, 075420.
[14] Peimyoo, N.; Yang, W.; Shang, J.; Shen, X.; Wang, Y.; Yu, T. ACS Nano 2014, 8, 11320.
[15] Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S.; Zhang, X.-A.; Wang, L.; Zhang, H.; Wee, A. T. S.; Chen, W. ACS Nano 2014, 8, 5323.
[16] Zhang, J.; Yu, H.; Chen, W.; Tian, X.; Liu, D.; Cheng, M.; Xie, G.; Yang, W.; Yang, R.; Bai, X.; Shi, D.; Zhang, G. ACS Nano 2014, 8, 6024.
[17] Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.;Qiao, X.; Tan, P.-H.; Kan, M.; Feng, J.; Sun, Q.; Liu, Z. Nano Lett. 2013, 13, 3870.
[18] Mouri, S.; Miyauchi, Y.; Matsuda, K. Nano Lett. 2013, 13, 5944.
[19] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Nano Lett. 2011, 11, 5111.
[20] Yue, Q.; Shao, Z.; Chang, S.; Li, J. Nano Res. Lett. 2013, 8, 425.
/
〈 |
|
〉 |