Review

Effects of Flexible Side Chains on Modulating the Functional Properties of Organic Semiconductors for Optoelectronics

  • Sang Ming ,
  • Cao Sizhen ,
  • Lai Wenyong ,
  • Huang Wei
Expand
  • a Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    b Key Laboratory of Flexible Electronics (KLOFE) & Institue of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China

Received date: 2015-05-03

  Online published: 2015-06-02

Supported by

Project supported by the National Key Basic Research Program of China (973 Program, 2014CB648300), the National Natural Science Foundation of China (21422402, 20904024, 51173081, 61136003), the Natural Science Foundation of Jiangsu Province (BM2012010, BK20140060, BK20130037), Program for New Century Excellent Talents in University (NCET-13-0872), Specialized Research Fund for the Doctoral Program of Higher Education (20133223110008), the Ministry of Education of China (IRT1148), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Six Talent Plan (2012XCL035) and Qing Lan Project of Jiangsu Province.

Abstract

In the past decades, great progress has been made in solution-processed organic semiconductor materials for optoelectronics. Tremendous efforts have been focused on the design of new π-conjugated backbones. In contrast, the effects of flexible chains, which are usually used as solubilizing groups, on the functional properties have been less investigated. In this report, we highlight the effects of flexible chains in organic semiconductors, including the influences of types, length, density, orientation, branching points. This would shed light to further understand the roles of flexible chains on modulating the functional properties of organic semiconductors for optoelectronic devices and thus facilitate the rational design and development of high-performance organic optoelectronic materials.

Cite this article

Sang Ming , Cao Sizhen , Lai Wenyong , Huang Wei . Effects of Flexible Side Chains on Modulating the Functional Properties of Organic Semiconductors for Optoelectronics[J]. Acta Chimica Sinica, 2015 , 73(8) : 770 -782 . DOI: 10.6023/A15050305

References

[1] Wöhrle, D.; Meissner, D. Adv. Mater. 1991, 3, 129.
[2] Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
[3] Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158. (付钰, 王芳, 张燕, 方旭, 赖文勇, 黄维, 化学学报, 2014, 72, 158.)
[4] Horowitz, G. Adv. Mater. 1998, 10, 365.
[5] Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
[6] Chen, S.; Deng, L.; Xie, J.; Peng, L.; Xie, L.; Fan, Q.; Huang, W. Adv. Mater. 2010, 22, 5227.
[7] Xie, L.-H.; Yin, C.-R.; Lai, W.-Y.; Fan, Q.-L.; Huang, W. Prog. Polym. Sci. 2012, 37, 1192.
[8] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[9] Xu, H.; Chen, R.; Sun, Q.; Lai, W.-Y.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.
[10] Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
[11] Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
[12] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
[13] Huang, W.; Yu, W.-L.; Meng, H.; Pei, J.; Li, S. F. Y. Chem. Mater. 1998, 10, 3340.
[14] Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1998, 120, 11808.
[15] Yu, W.-L.; Meng, H.; Pei, J.; Huang, W.; Li, Y.; Heeger, A. J. Macromolecules 1998, 31, 4838.
[16] He, P.; Li, Z. F.; Hou, Q. F.; Wang, Y. L. Chin. J. Org. Chem. 2013, 33, 288. (和平, 李在房, 侯秋飞, 王艳玲, 有机化学, 2013, 33, 288.)
[17] Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
[18] Guo, X.; Baumgarten, M.; Müllen, K. Prog. Polym. Sci. 2013, 38, 1832.
[19] Jiang, W.; Li, Y.; Wang, Z. Chem. Soc. Rev. 2013, 42, 6113.
[20] Li, H.; Kim, F. S.; Ren, G.; Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14920.
[21] Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900.
[22] Pron, A.; Leclerc, M. Prog. Polym. Sci. 2013, 38, 1815.
[23] Kim, J.-H.; Song, C. E.; Kim, B.; Kang, I.-N.; Shin, W. S.; Hwang, D.-H. Chem. Mater. 2014, 26, 1234.
[24] Liu, Z.; Zhang, G.; Cai, Z.; Chen, X.; Luo, H.; Li, Y.; Wang, J.; Zhang, D. Adv. Mater. 2014, 26, 6965.
[25] Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Adv. Mater. 2014, 26, 2636.
[26] Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A. J.; Pecunia, V.; Nasrallah, I. Nature 2014, 515, 384.
[27] Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. Acc. Chem. Res. 2014, 47, 1595.
[28] Zhang, W.; Liu, Y.; Yu, G. Adv. Mater. 2014, 26, 6802.
[29] Szarko, J. M.; Guo, J.; Liang, Y.; Lee, B.; Rolczynski, B. S.; Strzalka, J.; Xu, T.; Loser, S.; Marks, T. J.; Yu, L.; Chen, L. Adv. Mater. 2010, 22, 5468.
[30] Deng, Y.; Chen, Y.; Liu, J.; Liu, L.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. ACS Appl. Mater. Interfaces 2013, 5, 5741.
[31] Sung, A.; Ling, M. M.; Tang, M. L.; Bao, Z.; Locklin, J. Chem. Mater. 2007, 19, 2342.
[32] Han, A.; Dutta, G. K.; Lee, J.; Lee, H. R.; Lee, S. M.; Ahn, H.; Shin, T. J.; Oh, J. H.; Yang, C. Adv. Funct. Mater. 2015, 25, 247.
[33] Bao, Z.; Lovinger, A. J. Chem. Mater. 1999, 11, 2607.
[34] Lai, W.-Y.; Chen, Q. Q.; He, Q. Y.; Fan, Q. L.; Huang, W. Chem. Commun. 2006, 1959.
[35] Lai, W.-Y.; Zhu, R.; Fan, Q. L.; Hou, L. T.; Cao, Y.; Huang, W. Macromolecules 2006, 39, 3707.
[36] Zhu, R.; Lai, W.-Y.; Wang, H.-Y.; Yu, N.; Wei, W.; Peng, B.; Huang, W.; Hou, L.-T.; Peng, J.-B.; Cao, Y. Appl. Phys. Lett. 2007, 90, 141909.
[37] Lai, W.-Y.; He, Q. Y.; Zhu, R.; Chen, Q. Q.; Huang, W. Adv. Funct. Mater. 2008, 18, 265.
[38] Liu, F.; Lai, W.-Y.; Tang, C.; Wu, H. B.; Chen, Q. Q.; Peng, B.; Wei, W.; Huang, W.; Cao, Y. Macromol. Rapid Commun. 2008, 29, 659.
[39] Lai, W.-Y.; Xia, R.; He, Q. Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. Adv. Mater. 2009, 21, 355.
[40] Xia, R.; Lai, W.-Y.; Levermore, P. A.; Huang, W.; Bradley, D. D. Adv. Funct. Mater. 2009, 19, 2844.
[41] Lai, W.-Y.; Liu, D.; Huang, W. Sci. China Chem. 2010, 53, 2472.
[42] Lai, W.-Y.; Xia, R.; Bradley, D. D.; Huang, W. Chem. Eur. J. 2010, 16, 8471.
[43] Lai, W.-Y.; Liu, D.; Huang, W. Macromol. Chem. Phys. 2011, 212, 445.
[44] Zhao, L.; Jiu, Y.; Wang, J.; Zhang, X.; Lai, W.-Y.; Huang, W. Acta Chim. Sinica 2013, 71, 1248. (赵玲玲, 酒元达, 王建云, 张新稳, 赖文勇, 黄维, 化学学报, 2013, 71, 1248.)
[45] Wang, F.; Li, X. C.; Lai, W.-Y.; Chen, Y.; Huang, W.; Wudl, F. Org. Lett. 2014, 16, 2942.
[46] Wang, L.; Liang, B.; Huang, F.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2006, 89, 151115.
[47] Huang, F.; Wu, H.; Cao, Y. Chem. Soc. Rev. 2010, 39, 2500.
[48] Na, S.-I.; Kim, T.-S.; Oh, S.-H.; Kim, J.; Kim, S.-S.; Kim, D.-Y. Appl. Phys. Lett. 2010, 97, 223305.
[49] Seo, J. H.; Gutacker, A.; Sun, Y.; Wu, H.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2011, 133, 8416.
[50] Duan, C.; Zhang, K.; Zhong, C.; Huang, F.; Cao, Y. Chem. Soc. Rev. 2013, 42, 9071.
[51] He, Z.; Wu, H.; Cao, Y. Adv. Mater. 2014, 26, 1006.
[52] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.
[53] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6, 591.
[54] Xu, W.; Zhang, X.; Hu, Q.; Zhao, L.; Teng, X.; Lai, W.-Y.; Xia, R.; Nelson, J.; Huang, W.; Bradley, D. D. Org. Electron. 2014, 15, 1244.
[55] Xu, W.-D.; Lai, W.-Y.; Hu, Q.; Teng, X.-Y.; Zhang, X.-W.; Huang, W. Polym. Chem. 2014, 5, 2942.
[56] Xu, W.; Kan, Z.; Ye, T.; Zhao, L.; Lai, W.-Y.; Xia, R.; Lanzani, G.; Keivanidis, P. E.; Huang, W. ACS Appl. Mater. Interfaces 2015, 7, 5038.
[57] Henson, Z. B.; Zhang, Y.; Nguyen, T.-Q.; Seo, J. H.; Bazan, G. C. J. Am. Chem. Soc. 2013, 135, 4163.
[58] Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 20130.
[59] Kim, H.-J.; Kim, T.; Lee, M. Acc. Chem. Res. 2011, 44, 72.
[60] Mei, J.; Graham, K. R.; Stalder, R.; Tiwari, S. P.; Cheun, H.; Shim, J.; Yoshio, M.; Nuckolls, C.; Kippelen, B.; Castellano, R. K.; Reynolds, J. R. Chem. Mater. 2011, 23, 2285.
[61] Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. J. Am. Chem. Soc. 2012, 134, 16532.
[62] Kim, R.; Kang, B.; Sin, D. H.; Choi, H. H.; Kwon, S.-K.; Kim, Y.-H.; Cho, K. Chem. Commun. 2015, 51, 1524.
[63] Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K. Chem. Mater. 2011, 23, 4257.
[64] Tada, A.; Geng, Y.; Wei, Q.; Hashimoto, K.; Tajima, K. Nat. Mater. 2011, 10, 450.
[65] Ma, J.; Hashimoto, K.; Koganezawa, T.; Tajima, K. J. Am. Chem. Soc. 2013, 135, 9644.
[66] Babel, A.; Jenekhe, S. A. Synth. Met. 2005, 148, 169.
[67] Friedel, B.; McNeill, C. R.; Greenham, N. C. Chem. Mater. 2010, 22, 3389.
[68] Lee, H. S.; Cho, J. H.; Cho, K.; Park, Y. D. J. Phys. Chem. C. 2013, 117, 11764.
[69] Osaka, I.; Zhang, R.; Sauve, G.; Smilgies, D.-M.; Kowalewski, T.; McCullough, R. D. J. Am. Chem. Soc. 2009, 131, 2521.
[70] Zhang, J.; Tan, L.; Jiang, W.; Hu, W.; Wang, Z. J. Mater. Chem. C 2013, 1, 3200.
[71] Yiu, A. T.; Beaujuge, P. M.; Lee, O. P.; Woo, C. H.; Toney, M. F.; Frechet, J. M. J. J. Am. Chem. Soc. 2012, 134, 2180.
[72] Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Lin, E. K.; Richter, L. J.; Chabinyc, M. L.; Toney, M. F.; Heeney, M.; McCulloch, I. Macromolecules 2007, 40, 7960.
[73] McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328.
[74] Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378.
[75] Guo, X.; Ortiz, R. P.; Zheng, Y.; Kim, M.-G.; Zhang, S.; Hu, Y.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 13685.
[76] Osaka, I.; Abe, T.; Shimawaki, M.; Koganezawa, T.; Takimiya, K. ACS Macro Lett. 2012, 1, 437.
[77] Osaka, I.; Kakara, T.; Takemura, N.; Koganezawa, T.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 8834.
[78] Li, Z.; Zhang, Y.; Tsang, S.-W.; Du, X.; Zhou, J.; Tao, Y.; Ding, J. J. Phys. Chem. C 2011, 115, 18002.
[79] Wu, Q.; Wang, M.; Qiao, X.; Xiong, Y.; Huang, Y.; Gao, X.; Li, H. Macromolecules 2013, 46, 3887.
[80] Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.; Anthopoulos, T. D.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154.
[81] Mondal, R.; Miyaki, N.; Becerril, H. A.; Norton, J. E.; Parmer, J.; Mayer, A. C.; Tang, M. L.; Bredas, J.-L.; McGehee, M. D.; Bao, Z. Chem. Mater. 2009, 21, 3618.
[82] Mondal, R.; Ko, S.; Verploegen, E.; Becerril, H. A.; Toney, M. F.; Bao, Z. J. Mater. Chem. 2011, 21, 1537.
[83] Speros, J. C.; Martinez, H.; Paulsen, B. D.; White, S. P.; Bonifas, A. D.; Goff, P. C.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2013, 46, 5184.
[84] Wu, Q.; Ren, S.; Wang, M.; Qiao, X.; Li, H.; Gao, X.; Yang, X.; Zhu, D. Adv. Funct. Mater. 2013, 23, 2277.
[85] Lei, T.; Dou, J.-H.; Pei, J. Adv. Mater. 2012, 24, 6457.
[86] Coropceanu, V.; Cornil, J.; da Silva, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926.
[87] Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L.; Mannsfeld, S. C.; Yuan, W.; Sirringhaus, H.; Zhu, D. J. Am. Chem. Soc. 2013, 135, 2338.
[88] Lee, J.; Han, A. R.; Yu, H.; Shin, T. J.; Yang, C.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 9540.
[89] Meager, I.; Ashraf, R. S.; Mollinger, S.; Schroeder, B. C.; Bronstein, H.; Beatrup, D.; Vezie, M. S.; Kirchartz, T.; Salleo, A.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2013, 135, 11537.

Outlines

/