Research Progress on Interface Properties of Inorganic Solid State Lithium Ion Batteries
Received date: 2015-04-22
Online published: 2015-06-15
The development of solid-state lithium offers a fundamental solution to safety concerns of liquid electrolyte for lithium battery, because of the non-flammability of solid electrolyte. With society's increasing demand for large size lithium ion batteries and a growing concern about the safety of batteries, the development of solid lithium battery is imminent. To prepare solid lithium battery with excellent performance, we should obtain solid electrolyte with high ambient temperature ion conductivity and make a good contact between electrode and solid electrolyte. Most studies have been focus on the preparation of solid electrolyte with high ambient temperature ion conductivity. Although the conductivity of recently discovered solid electrolyte are comparable with those observed for liquid electrolytes. The high-rate capability of solid-state lithium batteries is still poor. This fact tell us that the rate-controlling step is at the interface between the electrode and the electrolyte materials. Only a few researchers have studied the interface between the electrode and the electrolyte materials. This paper introduces some oxide and sulfide electrolyte with high ambient temperature ion conductivity briefly. We mainly analyze the reasons for the high impedance at the interface between electrode and solid electrolyte, and furthermore, we investigate the modification methods to reduce the interface resistance.
Qiu Zhenping , Zhang Yingjie , Xia Shubiao , Dong Peng . Research Progress on Interface Properties of Inorganic Solid State Lithium Ion Batteries[J]. Acta Chimica Sinica, 2015 , 73(10) : 992 -1001 . DOI: 10.6023/A15040272
[1] Hara, M.; Nakano, H.; Dokko, K.; Okuda, S.; Kaeriyama, A.; Kanamura, K. J. Power Sources 2013, 189, 485.
[2] Cai, Y.; Li, Z.-J.; Zhang, H.-L.; Fan, X.; Zhang, S.-J. Acta Chim. Sinica 2010, 68, 1017. (蔡燕, 李在均, 张海朗, 范旭, 张锁江, 化学学报, 2010, 68,1017.)
[3] Xu, J.-Q.; Yang, J.; NuLi, Y.-N.; Zhang, W.-B. Acta Chim. Sinica 2005, 63, 1733. (许金强, 杨军, 努丽燕娜, 张万斌, 化学学报, 2005, 63, 1733.)
[4] Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115.
[5] Liu, J.; Xu, J.-Y.; Lin, Y.; Li, J.; Lai, Y.-Q.; Xu, C.-F.; Zhang, J.; Zhu, K. Acta Chim. Sinica 2013, 71, 869. (刘晋, 徐俊毅, 林月, 李劼, 赖延清, 袁长福, 张锦, 朱凯, 化学学报, 2013, 71, 869.)
[6] Ogawa, M.; Yoshida, K.; Harada, K. SEI Tech. Rev. 2012, 74, 88.
[7] Xi, J.-Y.; Ma, X.-M.; Cui, M.-Z.; Tang, X.-Z. Acta Chim. Sinica 2005, 63, 401. (席靖宇, 马晓梅, 崔梦忠, 唐小真, 化学学报, 2005, 63, 401.)
[8] Thangadurai, V.; Weppner, W. J. Power Sources 2005, 142, 339.
[9] Amiki, Y.; Sagane, F.; Yamamoto, K.; Hirayama, T.; Sudoh, M.; Motoyama, M.; Iryama, Y. J. Power Sources 2013, 241, 582.
[10] Xu, X.-X.; Qiu, Z.-J.; Guan, Y.-B.; Huang, Z.; Jin, Y. Energy Storage Science and Technology, 2013, 2, 331. (许晓雄, 邱志军, 官亦标, 黄祯, 金翼, 储能科学与技术, 2013, 2, 331.)
[11] Aono, H.; Sugimoto, S. J. Electrochem. Soc. 1990, 137, 1023.
[12] Fu, J. Solid State Ionics 1997, 96, 195.
[13] Murugan, R.; Thangadurai, V.; Weppner, W. Angew. Chem., Int. Ed. 2007, 46, 7778.
[14] Stramare, S.; Thangadurai, V.; Weppner, W. Chem. Mater. 2003, 15, 3974.
[15] Inaguma, Y.; Itoh, M. Solid State Ionics 1996, 86~88, 257.
[16] Kazakevicius, E.; Salkus, T.; Selskis, A.; Selskiene, A.; Dindune, A.; Kanepe, Z.; Ronis, J.; Miskinis, J.; Kazlauskiene, V.; Venckute, V.; Kezionis, A.; Orliukas, A. F. Solid State Ionics 2011, 188, 73
[17] Ortiz, G. F.; Lopez, M. C.; Lavela, P.; Vidal-Abarca, C.; Tirado, J. L. Solid State Ionics 2014, 262, 73
[18] Rao, A. V.; Veeraiah, V.; Rao, A. V. P; Babu, B. K.; Kumar, K. V. Ceram. Int. 2014, 40, 13911.
[19] Best, A. S.; Newman, P. J.; Mac Farlane, D. R.; Nairn, K. M.; Wong, S.; Forsyth, M. Solid State Ionics 1999, 126, 191.
[20] Klingler, M.; Chu, W. F.; Weppner, W. Solid State Ionics 1997, 3, 289.
[21] Aatiq, A.; Menetrier, M.; Jazouli, A. E.; Delmas, C. Solid State Ionics 2002, 150, 391.
[22] Zhang, M.; Takahashi, K.; Imanishi, N.; Takeda, Y.; Yamamoto, O.; Chi, B.; Pu, J.; Li, J. J. Electrochem. Soc. 2012, 159, A1114.
[23] Ohta, S.; Kobayashi, T.; Seki, J.; Takahiko, A. J. Power Sources 2012, 202, 332.
[24] Beck, F.; Ruetschi, P. Electrochim. Acta 2000, 45, 2467.
[25] Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mater. 2010, 22, 949.
[26] Fu, J. J. Mater. Sci. 1998, 33, 149.
[27] Chowdari, B. V. R.; Subba Rao, G. V.; Lee, G. Y. H. Solid State Ionics 2000, 136, 1067.
[28] West, W. C.; Whitacre, J. F.; Lim, J. R. J. Power Sources 2004, 126, 134.
[29] Dudney, N. J. J. Power Sources 2000, 89, 176.
[30] Zheng, N.; Bu, X.; Feng, P. Nature 2003, 426, 428.
[31] Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Solid State Ionics 2000, 130, 97.
[32] Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742.
[33] Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. Nat. Mater. 2011, 10, 1038.
[34] Xu, X.-X.; Wen, Z.-Y. J. Inorg. Mater. 2005, 20, 21. (徐晓雄, 温兆银, 无机材料学报, 2005, 20, 21.)
[35] Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T. J. Am. Ceram. Soc. 2001, 84, 477.
[36] Ngai, K. L. Phys. Rev. B 1993, 48, 13481.
[37] Zhang, Z.; Kennedy, J. H.; Thompson, J.; Anderson, S.; Lathrop, D. A.; Eckert, H. Appl. Phys. A 1989, 49, 41.
[38] Tatsumisago, M.; Hayashi, A. Solid State Ionics 2012, 225, 342.
[39] Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M. Electrochem. Commun. 2003, 5, 111.
[40] Mizuno, F.; Ohtomo, T.; Hayashi, A.; Tadanaga, K.; Tastumisago, M. Solid State Ionics 2006, 177, 2753.
[41] Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M. Sold State Ionics 2007, 178, 837.
[42] Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tasumisago, M. Adv. Mater. 2005, 17, 918.
[43] Minami, K.; Hayashi, A.; Ujiie, S.; Tassumisago, M. Solid State Ionics 2011, 192, 122.
[44] Tatsumisago, M.; Hirai, K.; Hirata, T.; Takahashi, M.; Minami, T. Solid State Ionics 1996, 86~88, 487.
[45] Ujiie, S.; Hayashi, A.; Tatsumisago, M. J. Solid State Electrochem. 2013, 17, 675.
[46] Ujiie, S.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2012, 211, 42.
[47] Takada, K.; Aotani, N.; Iwamoto, K.; Kondo, S. Solid State Ionics 1996, 86~88, 877.
[48] Hayashi, A.; Tatsumisago, M.; Minami, T. J. Electrochem. Soc. 1999, 146, 3472.
[49] Tatsumisago, M.; Hirai, K.; Minami, T.; Takahashi, M. J. Phys. Chem. 1997, 38, 63.
[50] Tatsumisago, M.; Machida, N.; Minami, T. J. Ceram. Soc. Jpn. 1987, 95, 197.
[51] Minami, T.; Hayashi, A.; Tasumisago, M. Solid State Ionics 2006, 177, 2715.
[52] Minami, T.; Machida, N. Mater. Chem. Phys. 1989, 23, 63.
[53] Minami, T.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2000, 136~137, 1015.
[54] Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tasumisago, M. Energy Environ. Sci. 2004, 7, 627.
[55] Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742.
[56] Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P. Mater. Res. Bull. 1983, 18, 189.
[57] Kennedy, J. H.; Sahami, S.; Shea, S. W.; Zhang, Z. Solid State Ionics 1986, 18~19, 368.
[58] Morimoto, H.; Yamashita, H.; Tatsumisago, M.; Minami, T. J. Am. Ceram. Soc. 1999, 82, 1352.
[59] Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Solid State Ionics 2006, 177, 2721.
[60] Hayashi, A.; Minami, K.; Ujiie, S.; Tatsumisago, M. J. Non-Cryst. Solids 2010, 356, 2670.
[61] Minami, T. Bull. Inst. Chem. Res. 1994, 72, 305.
[62] Schwarz, R. B.; Koch, C. C. Appl. Phys. Lett. 1986, 49, 146.
[63] Tatsumisago, M.; Hama, S.; Hayashi, A.; Morimoto, H.; Minami, T. Solid State Ionics 2002, 154~155, 635.
[64] Seino, Y.; Ota, Tsuyoshi.; Takada, K. J. Power. Sources 2011, 196, 6488.
[65] Takada, K. Langmuir 2013, 29, 7538.
[66] Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18, 2226.
[67] Takada, K.; Ohta, N.; Tateyama, Y. J. Inorg. Organomet. Polym. 2014, 10, 1007.
[68] Takada, K.; Ohta, N.; Zhang, L.-Q.; Xu, X.-X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ionics 2012, 225, 594.
[69] Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L.-Q.; Ma, R.-Z.; Fukuda, K.; Osada, M.; Sasaki, T. Electrochem. Commun. 2007, 9, 1486.
[70] Takada, K.; Ohta, N.; Zhang, L.-Q.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ionics 2008, 179, 1333.
[71] Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Power Sources 2009, 189, 527.
[72] Takada, K.; Xu, X.-X.; Fukuda, K.; Kumagai, K.; Watanabe, K.; Akatsuka, K. J. Electrochem. Soc. 2012, 44, 305.
[73] Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mater. 2010, 22, 949.
[74] Woo, J. H.; Trwvey, J. M.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S. H. J. Electrochem. Soc. 2012, 159, A1120.
[75] Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc. 2009, 156, A27.
[76] Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Electrochem. Soc. 2010, 195, 599.
[77] Machida, N.; kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ionics 2012, 225, 354.
[78] Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Electrochem. Solid-State Lett. 2008, 11, A1.
[79] Kobayashi, T.: Yamada, A.; Kanno, R. Electrochim. Acta 2008, 53, 5045.
[80] Kanno, R.; Murayama, M.; Inada, T.; Kobayashi, T.; Sakamoto, K.; Sonoyama, N.; Yamada, A.; Kondo, S. Electrochem. Solid-State Lett. 2004, 7, A455.
[81] Tatsumisago, M.; Mizuno, F.; Hayashi, A. J. Power Sources 2006, 159, 193.
[82] Hayashi, A.; Tatsumisago, M. Electron. Mater. Lett. 2012, 8, 199.
[83] Sakuda, A.; Hayatoshi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Electrochem. Solid-State Lett. 2010, 13(6), A73.
[84] Sakuda, A.; Hayashi, A.; Hama, S.; Tatsumisago, M. J. Am. Ceram. Soc. 2010, 93, 765.
[85] Hayashi, A.; Tatsumisago, M. Electron. Mater. Lett. 2012, 8, 199.
[86] Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. Power Sources 2011, 196, 6735.
[87] Shin, B. S.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, W. J.; Jung, Y. S. Electrochim. Acta 2014, 146, 395.
[88] Kitaura, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. Mater. Chem. 2011, 21, 118.
[89] Landstorfer, M.; Funken, S.; Jacob, T. Phys. Chem. Chem. Phys. 2011, 13, 12817.
[90] Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. 2010, 122, 4516.
[91] Yamada, H.; Oga, Y.; Saruwatari, I.; Moriguchi, I. J. Eletrochem. Soc. 2012, 159, A380.
[92] Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821.
[93] West, W. C.; Whitacre, J. F.; Ratnakumar, B. V. J. Eletrochem. Soc. 2003, 150, A1660.
[94] Tomczuk, Z.; Tani, B.; Otto, N. C.; Roche, M. F.; Vissers, D. R. J. Electrochem. Soc. 1982, 129, 925.
[95] Whittingham, M. S. Science 1976, 192, 1126.
[96] Jin, Z.-Q.; Xie, K.; Hong, X.-B. Acta Chim. Sinica 2014, 72, 11. (金朝庆, 谢凯, 洪晓斌, 化学学报, 2014, 72, 11.)
[97] Yamin, H.; Gorenshtein, A.; Penciner, J.; Sternberg, Y.; Peled, E. J. Electrochem. Soc. 1988, 135, 1045.
[98] Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M. Electrochem. Commun. 2013, 5, 701.
[99] Machida, N.; Kobayashi, K.; Nishikawa, Y.; Shigematsu, T. Solid State Ionics 2004, 175, 247.
[100] Hayashi, A.; Ohtsubo, R.; Ohtomo, T.; Mizuno, F.; Tatsumisago, M. J. Power Sources 2008, 183, 422.
[101] Tatsumisago, M.; Nagao, M.; Hayashi, A. J. Asian Ceram. Soc. 2013, 1, 17.
[102] Gu, D.-M.; Zhang, C.-M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L.-S. Acta Chim. Sinica 2012, 70, 2115. (顾大明, 张传明, 顾硕, 张音, 王余, 强亮生, 化学学报, 2012, 70, 2115.)
[103] Hasegawa, S.; Imanishi, N.; Zhang, T.; Xie, J.; Hirano, A.; Takeda, Y.; Yamamoto, O. J. Power Sources 2009, 189, 371.
[104] Kumar, B.; Kumar, J.; Leese, R.; Fellner, P. J.; Rodrigues, S. J.; Abraham, K. M. J. Electrochem. Soc. 2010, 17, A50.Inaguma, Y.; Nakashima, M. J. Power Sources 2013, 228, 250.
/
〈 |
|
〉 |