Article

Direct Transformation of Amides: Reductive Cycloaddition of Secondary Amides with Danishefsky Diene

  • Jian-Feng Zheng ,
  • Zhi-Qiang Xie ,
  • Xin-Jian Chen ,
  • Pei-Qiang Huang
Expand
  • Fujian Provincial Key Laboratory of Chemical Biology, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2015-06-06

  Online published: 2015-06-15

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cnProject supported by the National Natural Science Foundation of China (No. 21332007), National Found For Fostering Talents Of Basic Science (No. J1310024), Chinese Universities Scientific Fund (No. 20720150048) and the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education, China.

Abstract

Amides are widely used as stable synthetic intermediates in organic synthesis and medicinal chemistry. Versatile and chemoselective C—C bond forming methods for the direct transformation of amides are highly demanding. In this paper, we report the reductive cycloaddition of common secondary amides with the Danishefsky diene to produce 2-substituted 2,3-dihydro-4-pyridones. This one-pot procedure involves amide activation with triflic anhydride, partial reduction, and [4+2] cycloaddition. The synthetic utility of this step-econimical method was demonstrated by the short and protecting-group-free total syntheses of alkaloids (±)-lasubine I and (±)-myrtine.

Cite this article

Jian-Feng Zheng , Zhi-Qiang Xie , Xin-Jian Chen , Pei-Qiang Huang . Direct Transformation of Amides: Reductive Cycloaddition of Secondary Amides with Danishefsky Diene[J]. Acta Chimica Sinica, 2015 , 73(7) : 705 -715 . DOI: 10.6023/A15060395

References

[1] For a recent review, see:
(a) Zhou, L.-H.; Lu, W.-J. Acta Chim. Sinica 2015, 73, DOI:10.6023/A15040278. (周励宏, 陆文军, 化学学报, 2015, 73, DOI:10.6023/A15040278.)
(b) Ye, L.-W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833. For selected examples, see:
(c) Zhou, W.; Qian, P.; Zhao, J.-C.; Fang, H.; Han, J.-L.; Pan, Y. Org. Lett. 2015, 17, 1160.
(d) Peng, B.; Huang, X.-L.; Xie, L.-G.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 8718.
(e) Huang, L.-B.; Wang, Q.; Wu, W.-Q.; Jiang, H.-F. J. Org. Chem. 2014, 79, 7734.
(f) Peng, B.; Geerdink, D.; Farès, C.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 5462.
(g) Jaganathan, A.; Staples, R. J.; Borhan, B. J. Am. Chem. Soc. 2013, 135, 14806.
(h) Medley, J. W.; Movassaghi, M. Org. Lett. 2013, 15, 3614.
(i) Ma, F.; Chen, J.-X. Acta Chim. Sinica 2013, 71, 1118. (马菲, 陈建新, 化学学报, 2013, 71, 1118.)
(j) Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147. (张丹, 秦勇, 化学学报, 2013, 71, 147.)
(k) Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. Org. Lett. 2012, 14, 5972.
(l) Medley, J. W.; Movassaghi, M. Angew. Chem., Int. Ed. 2012, 51, 4572.
(m) Song, L.-Y; Liu, K.; Li, C.-Z. Org. Lett. 2011, 13, 3434.
(n) Lundin, P. M.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11027.
(o) Molander, G. A.; Jean-Gérard, L. J. Org. Chem. 2009, 74, 5446.
(p) Lettan II, R. B.; Galliford, C. V.; Woodward, C. C.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 8805.
(q) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594.
(r) Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59, 3575.
[2] For a review, see:
(a) Zhu, C.; Wang, R.; Falck, J. R. Chem.-Asian J. 2012, 7, 1502. For selected examples, see:
(b) He, J.; Li, S.-H; Deng, Y.-Q; Fu, H.-Y; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216.
(c) Schoonen, A. K.; Fernández-Ibáñez, M. á.; Fañanás-Mastral, M.; Teichert, J. F.; Feringa, B. L. Org. Biomol. Chem. 2014, 12, 36.
(d) Zhang, L.-S.; Chen, K.; Chen, G.-H.; Li, B.-J.; Luo, S.; Guo, Q.-Y.; Wei, J.-B.; Shi, Z.-J. Org. Lett. 2013, 15, 10.
(e) Smith, K.; El-Hiti, G. A.; Alshammari, M. B. J. Org. Chem. 2012, 77, 11210.
(f) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.
(g) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 428.
(h) Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. J. Org. Chem. 2008, 73, 7818.
(i) Laumer, J. M.; Kim, D. D.; Beak, P. J. Org. Chem. 2002, 67, 6797.
[3] For reviews, see:
(a) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
(b) Sato, T.; Chida, N. Org. Biomol. Chem. 2014, 12, 3147.
(c) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507.
(d) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
[4] (a) Xia, Q.; Ganem, B. Org. Lett. 2001, 3, 485.
(b) Xia, Q.; Ganem, B. Tetrahedron Lett. 2002, 43, 1597.
[5] (a) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. Org. Lett. 2005, 7, 4431.
(b) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. J. Org. Chem. 2006, 71, 704.
[6] Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
[7] (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(b) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. 2007, 72, 6270.
(c) Dong, Q.-L.; Liu, G.-S.; Zhou, H.-B.; Chen, L.; Yao Z.-J. Tetrahedron Lett. 2008, 49, 1636.
(d) Xu, P.; Liu, G.-S.; Xi, J.; Wang, S.-Z.; Yao, Z.-J. Tetrahedron 2011, 67, 5455.
(e) Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem., Int. Ed. 2012, 51, 8314.
(f) Huang, P.-Q.; Huang, Y.-H.; Xiao, K.-J.; Wang, Y.; Xia, X.-E. J. Org. Chem. 2015, 80, 2861.
(g) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
[8] (a) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950.
(b) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. J. Org. Chem. 2013, 78, 8305.
(c) Deng, H.-Q.; Qian, X.-Y.; Li, Y.-X.; Zheng, J.-F.; Xie, L.-F.; Huang, P.-Q. Org. Chem. Front. 2014, 1, 258.
(d) Mao. Z.-Y.; Huang, S.-Y.; Gao, L.-H.; Wang, A.-E; Huang, P.-Q. Sci. China Chem. 2014, 57, 252.
(e) Romanens, A.; Bélanger, G. Org. Lett. 2015, 17, 322.
(f) Huang, P.-Q; Geng, H; Tian, Y.-S; Peng, Q.-R.; Xiao, K.-J. Sci. China Chem. 2015, 58, 478.
[9] For reductive alkylation/functionalization of N-alkoxylamides, see:
(a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369.
(b) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem., Int. Ed. 2011, 50, 1350.
(c) Yanagita, Y.; Nakamura, H.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem.–Eur. J. 2013, 19, 678.
(d) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.; Kouklovsky, C. Chem.-Eur. J. 2013, 19, 9358.
(e) Jäkel, M.; Qu, J.-P.; Schnitzer, T.; Helmchen, G. Chem.-Eur. J. 2013, 19, 16746.
(f) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem., Int. Ed. 2014, 53, 512.
(g) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane, K.; Sato, T.; Chida, N. Chem.-Eur. J. 2014, 20, 17565.
(h) ref. 7g.
(i) Shirokane, K.; Tanaka, Y.; Yoritate, M.; Takayama, N.; Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522.
[10] (a) Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
(b) Xiao, K.-J.; Wang, A.-E; Huang, Y.-H.; Huang, P.-Q. Asian J. Org. Chem. 2012, 1, 130.
(c) Xiao, K.-J.; Huang, Y.-H.; Huang, P.-Q. Acta Chim. Sinica 2012, 70, 1917. (肖开炯, 黄应红, 黄培强, 化学学报, 2012, 70, 1917.)
(d) Pace, V.; Castoldi, L.; Holzer, W. Chem. Commun. 2013, 49, 8383.
[11] (a) Madelaine, C.; Valerio, V.; Maulide, N. Angew. Chem., Int. Ed. 2010, 49, 1583.
(b) Valerio, V.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2011, 17, 4742.
(c) Peng, B.; Geerdink, D.; Maulide, N. J. Am. Chem. Soc. 2013, 135, 14968. See also:
(d) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606.
[12] (a) Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. J. Am. Chem. Soc. 2012, 134, 17482.
(b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
[13] Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.
[14] Huang, P.-Q.; Lang, Q.-W.; Wang, A.-E.; Zheng, J.-F. Chem. Commun. 2015, 51, 1096.
[15] (a) Alder, K. Neuer Methodender Praperative Organischen Chemie, Verlag Chemie: Weinheim/Bergstr., 1943. For recent reviews, see:
(b) Sarmah, M. M.; Prajapati, D. Curr. Org. Chem. 2014, 18, 1586.
(c) Masson, G.; Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.
(d) Memeo, M. G.; Quadrelli, P. Chem.-Eur. J. 2012, 18, 12554.
(e) Girling, P. R.; Kiyoi, T.; Whiting, A. Org. Biomol. Chem. 2011, 9, 3105.
[16] (a) Kerwin, J. F. Jr.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739.
(b) Danishefsky, S.; Kerwin, J. F. Jr. J. Org. Chem. 1982, 47, 3183.
[17] For selected examples, see:
(a) Waldmann, H.; Braun, M. J. Org. Chem. 1992, 57, 4444.
(b) Hattori, K.; Yamamoto, H. Synlett 1993, 129.
(c) Hattori, K.; Yamamoto, H. Tetrahedron 1993, 49, 1749.
(d) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979.
(e) Kaw?cki, R. Synthesis 2001, 828.
(f) Yuan, Y.; Li, X.; Ding, K.-L. Org. Lett. 2002, 4, 3309.
(g) Timmons, C.; Kattuboina, A.; McPherson, L.; Mills, J.; Li, G.-G. Tetrahedron 2005, 61, 11837.
(h) Andreassen, T.; Haland, T.; Hansen, L. K.; Gautun, O. R. Tetrahedron Lett. 2007, 48, 8413.
(i) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff, W. D. J. Am. Chem. Soc. 2007, 129, 7216.
(j) Shang, D.-J.; Xin, J.-G.; Liu, Y.-L.; Zhou, X.; Liu, X.-H.; Feng, X.-M. J. Org. Chem. 2008, 73, 630.
(k) Alaimo, P. J.; O’Brien III, R.; Johnson, A. W.; Slauson, S. R.; O’Brien, J. M.; Tyson, E. L.; Marshall, A.-L.; Ottinger, C. E.; Chacon, J. G.; Wallace, L.; Paulino, C. Y.; Connell, S. Org. Lett. 2008, 10, 5111.
(l) Cui, B.; Kong, S.-S.; Wu, G.-P.; Miao, Z.-W.; Chen, R.-Y. Synthesis 2012, 44, 111.
(m) Olmos, A.; Louis, B.; Pale, P. Chem.-Eur. J. 2012, 18, 4894.
(n) Shao, J.; Yang, J.-S. J. Org. Chem. 2012, 77, 7891.
(o) Chen, B.-L.; Wang, B.; Lin, G.-Q. Sci. China Chem. 2014, 57, 945.
(p) Takeda, Y.; Hisakuni, D.; Lin, C.-H.; Minakata, S. Org. Lett. 2015, 17, 318.
[18] (a) Joseph, S.; Comins, D. L. Curr. Opin. Drug Disc. 2002, 5, 870.
(b) Ege, M.; Wanner, K. T. Org. Lett. 2004, 6, 3553.
[19] For a recent account, see:
(a) Wang A.-E; Huang, P.-Q. Pure Appl. Chem. 2014, 86, 1227. For selected recent examples, see:
(b) Huang, P.-Q.; Huang, S.-Y.; Gao, L.-H.; Mao, Z.-Y.; Chang, Z.; Wang, A.-E Chem. Commun. 2015, 51, 4576.
(c) Luo, S.-P.; Peng, Q.-L.; Xu, C.-P.; Wang, A.-E; Huang, P.-Q. Chin. J. Chem. 2014, 32, 757.
(d) Wang, X.-G.; Wang, A.- E; Huang, P.-Q. Chin. Chem. Lett. 2014, 25, 193.
[20] For a review, see: Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077.
[21] During the preparation of this manuscript, a Schwartz’s reagent-mediated one-pot reduction/Mannich/Michael sequence of lactams appeared: Szczesńiak, P.; Stecko, S.; Maziarz, E.; Staszewska-Krajewska, O.; Furman, B. J. Org. Chem. 2014, 79, 10487.
[22] (a) Fry, J. L. J. Chem. Soc., Chem. Commun. 1974, 45.
(b) Fry, J. L.; Ott, R. A. J. Org. Chem. 1981, 46, 602.
[23] Ali, T.; Chauhan, K. K.; Frost, C. G. Tetrahedron Lett. 1999, 40, 5621.
[24] (a) Shenvi, R. A.; O'Malley, D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530.
(b) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
[25] (a) Fuji, K.; Yamada, T.; Fujita, E.; Murata, H. Chem. Pharm. Bull. 1978, 26, 2515.
(b) Slosse, P.; Hootele, C. Tetrahedron Lett. 1978, 19, 397.
[26] (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
(b) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
[27] For racemic syntheses, see:
(a) Iida, H.; Tanaka, M.; Kibayashi, C. J. Org. Chem. 1984, 49, 1909.
(b) Beckwith, A. L. J.; Joseph, S. P.; Mayadunne, R. T. A. J. Org. Chem. 1993, 58, 4198.
(c) Roland, R. Beil. J. Org. Chem. 2007, 3, 32. For asymmetric syntheses, see:
(d) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807.
(e) Chalard, P.; Remuson, R.; Mialhe, Y. G.; Remuson, J. C. Tetrahedron: Asymmetry 1998, 9, 4361.
(f) Ratni, H.; Rao, A.; Kundig, E. P. Org. Lett. 1999, 1, 1997.
(g) Davis, F. A.; Rao, A.; Carroll, P. J. Org. Lett. 2003, 5, 3855.
(h) Liu, S.-Y.; Fan, Y.-P.; Peng, X.-X.; Wang, W.; Hua, W-Y.; Akber, H-J.; Liao, L.-X. Tetrahedron Lett. 2006, 47, 7681.
(i) Mancheno, O. G.; Arrayas, R. G.; Adrio J.; Carretero, J. C. J. Org. Chem. 2007, 72, 10294.
(j) Naoki, Y.; Masakazu, A.; Chihiro, K.; Sakae, A. Heterocycles 2009, 79, 433.
[28] For racemic syntheses, see:
(a) Slosse, P.; Hootele, C. Tetrahedron Lett. 1979, 20, 4587.
(b) Comins, D. L.; LaMunyon, D. H. Tetrahedron Lett. 1989, 30, 5053.
(c) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. Tetrahedron Lett. 1993, 34, 2729.
(d) Pilli, R. A.; Dias, L. C.; Maldaner, A. O. J. Org. Chem. 1995, 60, 717.
(e) Back, T. G.; Hamilton, M. D.; Lim, V. J. J.; Parvez, M. J. Org. Chem. 2005, 70, 967. For asymmetric syntheses, see:
(f) Comins, D. L.; LaMunyon, D. H. J. Org. Chem. 1992, 57, 5807.
(g) Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.-C.; Perrin, B.; Remuson, R. Tetrahedron: Asymmetry 1998, 9, 1823.
(h) ref. 27c.
(i) Davis, F. A.; Xu, H.; Zhang, J. J. Org. Chem. 2007, 72, 2046.
(j) Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 3464.
(k) Ying, Y.; Kim, H.; Hong, J. Org. Lett. 2011, 13, 796.
(l) Fustero, S.; Moscardó, J.; Sánchez-Roselló, M.; Flores, S.; Guerola, M. Tetrahedron 2011, 67, 7412.
(m) Vu, V. H.; Louafi, F.; Girard, N.; Marion, R.; Roisnel, T.; Dorcet, V.; Hurvois, J.-P. J. Org. Chem. 2014, 79, 3358.Giese, B.; Kopping, B.; Chatgilialoglu, C. Tetrahedron Lett. 1989, 30, 681.

Outlines

/