Review

Advances in Porous Organic Catalysis

  • Wang Changan ,
  • Wang Wei
Expand
  • a College of Chemistry and Chemical Engineering, Taishan University, Taian 271021;
    b State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000

Received date: 2015-01-09

  Online published: 2015-02-06

Supported by

Project supported by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2014CL035).

Abstract

Porous organic polymers (POPs) have become one of a frontier of the research in recent years. POPs including amorphous (e.g. CMP, HCP, PIM, etc.) and crystalline (e.g. COF) porous organic polymers. Due to their inherent porosity, large specific surface area, light weight and easy functionalization at the molecular level, POPs have recently received significant attention for potential applications in gas storage/separation, organic photoelectric, sensoring and heterogeneous catalysis. Here, this review focus on recent developments of POPs in heterogeneous catalysis. Currently, the research on the application of POPs for heterogeneous catalysis is classified into three sections: (a) “bottom-up” embedding metal-ligand catalyst into POPs for heterogeneous catalysis; (b) the encapsulation of metal nanoparticles into POPs for heterogeneous catalysis; (c) “bottom-up” embedding organocatalyst into POPs for heterogeneous organocatalysis. Benefiting from its structural superiority, these functional POPs exhibit excellent catalytic activity. Reference to the development of homogeneous catalysis, the application of functional POPs for heterogeneous catalysis will also have more room for development.

Cite this article

Wang Changan , Wang Wei . Advances in Porous Organic Catalysis[J]. Acta Chimica Sinica, 2015 , 73(6) : 498 -529 . DOI: 10.6023/A15010019

References

[1] Thomas, A. Angew. Chem., Int. Ed. 2010, 49, 8328.
[2] Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
[3] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
[4] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
[5] Meng, X.; Xiao, F.-S. Chem. Rev. 2013, 114, 1521.
[6] Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F. J. Chem. Soc. Rev. 2013, 42, 3913.
[7] Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[8] (a) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
(b) Cooper, A. I. Adv. Mater. 2009, 21, 1.
[9] (a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
(b) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
(c) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[10] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[11] McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.
[12] Davankov, V. A.; Tsyurupa, M. P. React. Polym. 1990, 13, 27.
[13] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[14] (a) Li, A.; Lu, R.-F.; Wang, Y.; Wang, X.; Han, K.-L.; Deng, W.-Q. Angew. Chem., Int. Ed. 2010, 49, 3330.
(b) Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C-G.; Han, B-H. J. Am. Chem. Soc. 2012, 134, 6084.
(c) Song, J.; Huang, Z.; Zheng, Q. Chin. J. Chem. 2013, 31, 577.
(d) Cui, Y.; Zhao, Y.; Wang, T.; Han, B. Chin. J. Chem. 2015, 33, 131.
[15] Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D Adv. Mater. 2008, 20, 2766.
[16] (a) Ben, T.; Shi, K.; Cui, Y.; Pei, C.; Zuo, Y.; Guo, H.; Zhang, D.; Xu, J.; Deng, F.; Tian, Z.; Qiu, S. J. Mater. Chem. 2011, 21, 18208;
(b) Liu, X.; Xu, Y.; Jiang, D. J. Am. Chem. Soc. 2012, 134, 8738.
[17] (a) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
(b) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
(c) Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2011, 133, 17622.
(d) Patra, A.; Scherf, U. Chem. Eur. J. 2012, 18, 10074.
[18] (a) Kaur, P.; Hupp, J. T.; Nguyen, S. T ACS Catal. 2011, 1, 819.
(b) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
(c) Rose, M. ChemCatChem 2014, 6, 1166.
[19] Meunier, B. Chem. Rev. 1992, 92, 1411.
[20] McKeown, N. B.; Hanif, S.; Msayib, K.; Tattershall, C. E.; Budd, P. M. Chem. Commun. 2002, 2782.
[21] Mackintosh, H. J.; Budd, P. M.; McKeown, N. B. J. Mater. Chem. 2008, 18, 573.
[22] Makhseed, S.; Al-Kharafi, F.; Samuel, J.; Ateya, B. Catal. Commun. 2009, 10, 1284.
[23] Chen, L.; Yang, Y.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 9138.
[24] Chen, L.; Yang, Y.; Guo, Z.; Jiang, D. Adv. Mater. 2011, 23, 3149.
[25] Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Chem. Sci. 2011, 2, 686.
[26] Saha, B.; Gupta, D.; Abu-Omar, M. M.; Modak, A.; Bhaumik, A. J. Catal. 2013, 299, 316.
[27] Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Chem. Commun. 2012, 48, 248.
[28] Totten, R. K.; Kim, Y.-S.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc. 2013, 135, 11720.
[29] Feng, L-J.; Chen, Q.; Zhu, J-H.; Liu, D-P.; Zhao, Y-C.; Han, B.-H. Polym. Chem. 2014, 5, 3081.
[30] Zhang, W.; Jiang, P.; Wang, Y.; Zhang, J.; Zhang, P. Catal. Sci. Technol. 2015, 5, 101.
[31] Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.
[32] Budd, P. M.; Ghanem, B.; Msayib, K.; McKeown, N. B.; Tattershall, C. J. Mater. Chem. 2003, 13, 2721.
[33] Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Angew. Chem., Int. Ed. 2009, 48, 6909.
[34] Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.
[35] Jiang, J.-X.; Wang, C.; Laybourn, A.; Hasell, T.; Clowes, R.; Khimyak, Y. Z.; Xiao, J.; Higgins, S. J.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2011, 50, 1072.
[36] Wang, J.-L.; Wang, C.; deKrafft, K. E.; Lin, W. ACS Catal. 2012, 2, 417.
[37] (a) Pierpont, C. G. Inorg. Chem. 2011, 50, 9766;
(b) Raymond, K. N.; Isied, S. S.; Brown, L. D.; Fronczek, F. R.; Nibert, J. H. J. Am. Chem. Soc. 1976, 98, 1767.
[38] Weston, M. H.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Nguyen, S. T. Chem. Mater. 2012, 24, 1292.
[39] Weston, M. H.; Peterson, G. W.; Browe, M. A.; Jones, P.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2013, 49, 2995.
[40] Tanabe, K. K.; Siladke, N. A.; Broderick, E. M.; Kobayashi, T.; Goldston, J. F.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Pruski, M.; Mader, E. A.; Johnson, M. J. A.; Nguyen, S. T. Chem. Sci. 2013, 4, 2483.
[41] Kraft, S. J.; Sánchez, R. H.; Hock, A. S. ACS Catal. 2013, 3, 826.
[42] Totten, R. K.; Weston, M. H.; Park, J. K.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2013, 3, 1454.
[43] Kraft, S. J.; Zhang, G.; Childers, D.; Dogan, F.; Miller, J. T.; Nguyen, S. T.; Hock, A. S. Organometallics 2014, 33, 2517.
[44] Xie, Y.; Liu, X.-H.; Zou, K.; Deng, W.-Q. Nat. Commun. 2013, 4, 1960.
[45] Li, H.; Xu, B.; Liu, X.; Sigen, A.; He, C.; Xia, H.; Mu, Y. J. Mater. Chem. A 2013, 1, 14108.
[46] Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561.
[47] Thiel, K.; Zehbe, R.; Roeser, J.; Strauch, P.; Enthaler, S.; Thomas, A. Polym. Chem. 2013, 4, 1848.
[48] Zhang, C.; Wang, J-J.; Liu, Y.; Ma, H.; Yang, X-L.; Xu, H-B. Chem. Eur. J. 2013, 19, 5004.
[49] Wang, W.; Zheng, A.; Zhao, P.; Xia, C.; Li, F. ACS Catal. 2013, 4, 321.
[50] Zhang, Y.; Riduan, S. N.; Ying, J. Y. Chem. Eur. J. 2009, 15, 1077.
[51] Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
[52] (a) Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390.
(b) Guan, Z.; Li, B.; Hai, G.; Yang, X.; Li, T.; Tan, B. RSC Adv. 2014, 4, 36437.
[53] Lei, Y.; Wu, L.; Zhang, X.; Mei, H.; Gu, Y.; Li, G. J. Mol. Catal. A: Chem. 2015, 398, 164.
[54] Puthiaraj, P.; Pitchumani, K. Chem. Eur. J. 2014, 20, 8761.
[55] Ding, K. L. Acta Chim. Sinica 2014, 72, 755. (丁奎岭, 化学学报, 2014, 72, 755.)
[56] Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2014, 72, 778. (谢建华, 周其林, 化学学报, 2014, 72, 778.)
[57] Trindade, A. F.; Gois, P. M. P.; Afonso, C. A. M. Chem. Rev. 2009, 109, 418.
[58] Ma, L.; Wanderley, M. M.; Lin, W. ACS Catal. 2011, 1, 691.
[59] Sun, Q.; Meng, X.; Liu, X.; Zhang, X.; Yang, Y.; Yang, Q.; Xiao, F.-S. Chem. Commun. 2012, 48, 10505.
[60] Verde-Sesto, E.; Pintado-Sierra, M.; Corma, A.; Maya, E. M.; dela Campa, J. G.; Iglesias, M.; Sánchez, F. Chem. Eur. J. 2014, 20, 5111.
[61] An, W.-K.; Han, M.-Y.; Wang, C.-A.; Yu, S.-M.; Zhang, Y.; Bai, S.; Wang, W. Chem. Eur. J. 2014, 20, 11019.
[62] Wang, X.; Liu, Y.; Cui, Y. Bull. Chem. Soc. Jpn. 2014, 87, 435.
[63] Dong, J.; Liu, Y.; Cui, Y. Chem. Commun. 2014, 50, 14949.
[64] Schmidt, J.; Weber, J.; Epping, J. D.; Antonietti, M.; Thomas, A. Adv. Mater. 2009, 21, 702.
[65] Hasell, T.; Wood, C. D.; Clowes, R.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Chem. Mater. 2009, 22, 557.
[66] Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. Nano Lett. 2010, 10, 537.
[67] Chan-Thaw, C. E.; Villa, A.; Prati, L.; Thomas, A. Chem. Eur. J. 2011, 17, 1052.
[68] Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
[69] Bhunia, M. K.; Das, S. K.; Pachfule, P.; Banerjee, R.; Bhaumik, A. Dalton Trans. 2012, 41, 1304.
[70] Zhang, Q.; Yang, Y.; Zhang, S. Chem. Eur. J. 2013, 19, 10024.
[71] Liang, Q.; Liu, J.; Wei, Y.; Zhao, Z.; MacLachlan, M. J. Chem. Commun. 2013, 49, 8928.
[72] Zhong, H.; Gong, Y.; Zhang, F.; Li, L.; Wang, R. J. Mater. Chem. A 2014, 2, 7502.
[73] Puthiaraj, P.; Pitchumani, K. Green Chem. 2014, 16, 4223.
[74] Modak, A.; Pramanik, M.; Inagaki, S.; Bhaumik, A. J. Mater. Chem. A, 2014, 2, 11642.
[75] Li, L.; Chen, Z.; Zhong, H.; Wang, R. Chem. Eur. J. 2014, 20, 3050.
[76] Wang, F.; Mielby, J.; Richter, F. H.; Wang, G.; Prieto, G.; Kasama, T.; Weidenthaler, C.; Bongard, H.-J.; Kegnæs, S.; Fürstner, A.; Schüth, F. Angew. Chem., Int. Ed. 2014, 53, 8645.
[77] Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
[78] Pachfule, P.; Panda, M. K.; Kandambeth, S.; Shivaprasad, S. M.; Diaz, D. D.; Banerjee, R. J. Mater. Chem. A 2014, 2, 7944.
[79] Pachfule, P.; Kandambeth, S.; Diaz, D. D.; Banerjee, R. Chem. Commun. 2014, 50, 3169.
[80] Thote, J.; Aiyappa, H. B.; Deshpande, A.; Diaz, D. D.; Kurungot, S.; Banerjee, R. Chem.Eur. J. 2014, 20, 15961.
[81] MacMillan, D. W. C. Nature 2008, 455, 304.

[82] Du, X.; Sun, Y.; Tan, B.; Teng, Q.; Yao, X.; Su, C.; Wang, W. Chem. Commun. 2010, 46, 970.
[83] Zhang, Y.; Zhang, Y.; Sun, Y. L.; Du, X.; Shi, J. Y.; Wang, W. D.; Wang, W. Chem. Eur. J. 2012, 18, 6328.
[84] Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793.
[85] Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47, 3450.
[86] Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Chem. Mater. 2013, 25, 1542.
[87] Merino, E.; Verde-Sesto, E.; Maya, E. M.; Iglesias, M.; Sánchez, F.; Corma, A. Chem. Mater. 2013, 25, 981.
[88] Modak, A.; Mondal, J.; Bhaumik, A. Appl. Catal. A: Gen. 2013, 459, 41.
[89] Liu, X.; Sigen, A.; Zhang, Y.; Luo, X.; Xia, H.; Li, H.; Mu, Y. RSC Adv. 2014, 4, 6447.
[90] Modak, A.; Mondal, J.; Bhaumik, A. ChemCatChem 2013, 5, 1749.
[91] Suresh, V. M.; Bonakala, S.; Atreya, H. S.; Balasubramanian, S.; Maji, T. K. ACS Appl. Mater. Interfaces 2014, 6, 4630.
[92] Liu, B.; Ben, T.; Xu, J.; Deng, F.; Qiu, S. New J. Chem. 2014, 38, 2292.
[93] Zhang, Y.; Li, B.; Ma, S. Chem. Commun. 2014, 50, 8507.
[94] Fang, Q.; Gu, S.; Zheng, J.; Zhuang, Z.; Qiu, S.; Yan, Y. Angew. Chem., Int. Ed. 2014, 53, 2878.
[95] Shinde, D. B.; Kandambeth, S.; Pachfule, P.; Kumar, R. R.; Banerjee, R. Chem. Commun. 2015, 51, 310.
[96] Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F.,Angew. Chem. Int. Ed. 2013, 52, 1432.
[97] Urakami, H.; Zhang, K.; Vilela, F. Chem. Commun. 2013, 49, 2353.
[98] Kang, N.; Park, J. H.; Ko, K. C.; Chun, J.; Kim, E.; Shin, H.-W.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y.; Son, S. U. Angew. Chem., Int. Ed. 2013, 52, 6228.
[99] Jiang, J.-X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.
[100] Bleschke, C.; Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Adv. Synth. Catal. 2011, 353, 3101.
[101] Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S., Angew. Chem. Int. Ed. 2012, 51, 5456.
[102] Wang, C. A.; Zhang, Z. K.; Yue, T.; Sun, Y. L.; Wang, L.; Wang, W. D.; Zhang, Y.; Liu, C.; Wang, W. Chem. Eur. J. 2012, 18, 6718.
[103] Wang, C. A.; Zhang, Y.; Wang, W. unpublished result.
[104] Schmidt, J.; Kundu, D. S.; Blechert, S.; Thomas, A. Chem. Commun. 2014, 50, 3347.
[105] Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Chem. Commun. 2014, 50, 1292.
[106] Cho, H. C.; Lee, H. S.; Chun, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Chem. Commun. 2011, 47, 917.
[107] Zhang, Q.; Zhang, S.; Li, S. Macromolecules 2012, 45, 2981.
[108] Tan, M. X.; Gu, L.; Li, N.; Ying, J. Y.; Zhang, Y. Green Chem. 2013, 15, 1127.

Outlines

/