Recent Development in Pd-Catalyzed meta-C(sp2)-H Bond Activation Based on Directing Strategy
Received date: 2015-05-10
Online published: 2015-06-29
Supported by
Project supported by the National Basic Research Program of China(973 Program, No. 2015CB856600), the National Natural Science Foundation of China(Nos. 21325206, 21172006), the National Young Top-notch Talent Support Program and the Programs Foundation of the Ministry of Education of China(No. 20120001110013).
In recent years, remarkable progress has been achieved in Pd-catalyzed meta-C(sp2)-H bond activation with directing groups. Based on remote activation strategy, a series of U-shaped directing groups have been devised by Yu and others and have been utilized in the olefination, arylation and acetoxylation of different types of substrates with the assistance of mono-protected amino acids(MPAA). Very recently, Yu reported the Pd-catalyzed meta-C(sp2)-H bond activation via the tandem reaction of ortho-C(sp2)-H bond activation and Catellani reaction using simple directing groups, in which alkylation and arylation could all be realized under the Pd/norbornene catalytic system. Dong and co-workers developed arylation of the meta-C(sp2)-H bond of N,N-dimethylbenzylamine with similar strategy. It is noteworthy that these above mentioned meta-C(sp2)-H bond activation protocols could be applied in the late-stage modification and the synthesis of some biologically active molecules and pharmaceutical intermediates. This manuscript will highlight the latest advances in Pd-catalyzed meta-C(sp2)-H bond activation with directing groups.
Yuan Yizhi , Song Song , Jiao Ning . Recent Development in Pd-Catalyzed meta-C(sp2)-H Bond Activation Based on Directing Strategy[J]. Acta Chimica Sinica, 2015 , 73(12) : 1231 -1234 . DOI: 10.6023/A15050319
[1] Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr.; Smith, M. R. Ⅲ. Science 2002, 295, 305.
[2] (a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
(b) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964.
[3] Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518.
[4] (a) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.
(b) Wan, L.; Dastbaravardeh, N.; Li, G.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 18056.
(c) Tang, R.-Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.
(d) Yang, G.; Lindovska, P.; Zhu, D.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.
(e) Deng, Y.; Yu, J.-Q. Angew. Chem., Int. Ed. 2015, 54, 888.
(f) Lee, S.; Lee, H.; Tan, K. L. J. Am. Chem. Soc. 2013, 135, 18778.
(g) Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.
[5] Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 119.
[6] Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.; Yu, J.-Q. Nature 2015, 519, 334.
[7] (a) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148.
(b) Mariampillai, B.; Alliot, J.; Li, M.; Lautens, M. J. Am. Chem. Soc. 2007, 129, 15372.
(c) Gericke, K. M.; Chai, D. I.; Bieler, N.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 1447.
(d) Candito, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 6713.
(e) Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 1849.
(f) Cárdenas, D. J.; Martín-Matute, B.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 5033.
(g) Dong, Z.; Dong, G. J. Am. Chem. Soc. 2013, 135, 18350.
(h) Sui, X.; Zhu, R.; Li, G.; Ma, X.; Gu, Z. J. Am. Chem. Soc. 2013, 135, 9318.
(i) Sun, F.; Gu, Z. Org. Lett. 2015, 17, 2222.
[8] (a) Jiao, L.; Bach, T. J. Am. Chem. Soc. 2011, 133, 12990.
(b) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc. 2012, 134, 14563.
(c) Jiao, L.; Bach, T. Angew. Chem., Int. Ed. 2013, 52, 6080.
[9] Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[10] Dong, Z.; Wang, J.; Dong, G. J. Am. Chem. Soc. 2015, 137, 5887.
/
| 〈 |
|
〉 |