Synthesis Progress of Layered TMOC-based Intercalation Structures
Received date: 2015-05-14
Online published: 2015-07-17
Supported by
Project supported by the the National Basic Research Program of China (2014CB848900), the National Natural Science Foundation of China (U1232131, 11375198), the Fundamental Research Funds for the Central Universities (WK2310000035), the Recruitment Program of Global Experts and the CAS Hundred Talent Program.
Different types of intercalated agents can be in-situ intercalated into two-dimensional (2D) layered transition metal oxides and chalcogens (TMOCs), which can engineer its electronic structure at the atomic scale and tune its intrinsic physical and chemical properties (i.e. carrier concentration and mobility, magnetic, optical, and other properties). Such intercalations provide a facile way to create new types of multifunctional materials, thus largely extend 2D material's applications for opto-electronic devices, energy storage and conversion, photoelectrocatalysis, etc. Recently, many efforts have been focused on seeking suitable synthesis routes to achieve different types of intercalated nanomaterials. Here, we concisely reviewed the recent development on TMOC-based intercalations produced by various intercalated agents in-situ intercalating. The synthetic strategy of alkali metal and non-alkali metal intercalation, polymer intercalation, small organic molecules intercalation and reduced graphene oxide intercalation were mainly reviewed. Through affecting the interlayer interactions and the crystal anisotropy can realize the strategy of in-situ intercalated layered materials.
Liu Qin , Liu DaoBin , He Qun , Xiang Ting , Adnan Khalil , Song Li . Synthesis Progress of Layered TMOC-based Intercalation Structures[J]. Acta Chimica Sinica, 2015 , 73(9) : 936 -943 . DOI: 10.6023/A15050331
[1] Liu, Y. Z.; Wang, X. Q.; Chen, Y. Z.; Du, S. Y. Acta Chim. Sinica 2012, 70, 911. (刘羽中, 王小群, 陈贻炽, 杜善义, 化学学报, 2012, 70, 911.)
[2] Zhang, C.; Wang, X.; Song, X. L.; Song, K. H.; Qian, P.; Yin, H. Z. Acta Chim. Sinica 2013, 71, 1553. (张超, 王幸, 宋西亮, 宋开慧, 钱萍, 尹洪宗, 化学学报, 2013, 71, 1553.)
[3] Chhowalla, M.; Hyeon, S. S.; Eda, G.; Li, L. J.; Kian, P. L.; Zhang, H. Nature Chem. 2013, 5, 263.
[4] Joy, H.; Mercouri, G. K. J. Am. Chem. Soc. 1999, 121, 638.
[5] Lin, Y. C.; Dumitru, O. D.; Huang, Y. S.; Kazu, S. Nature Nanotechol. 2014, 9, 391.
[6] Sandoval, S. J.; Yang, D.; Frindt, R. F.; Irwin, J. C. Phys. Rev. B 1991, 44, 3955.
[7] Mattheiss, L. F. Phys. Rev. B 1973, 8, 3719.
[8] Mishra, S. K.; Satpathy, S.; Jepsen, O. J. Phys. Condens. Matter 1997, 9, 461.
[9] Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C.; Wu, M. K. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14262.
[10] Yao, T.; Zhang, X.; Sun, Z. H.; Liu, S. J.; Huang, Y. Y.; Xie, Y.; Wu, C. Z.; Yuan, X.; Zhang, W. Q.; Wu, Z. Y.; Pan, G. Q.; Hu, F. C.; Wu, L. H.; Liu, Q. H.; Wei, S.Q. Phys. Rev. Lett. 2010, 105, 226405.
[11] Liang, L.; Li, K.; Xiao, C.; Fan, S.; Liu, J.; Zhang, W.; Xu, W.; Tong, W.; Liao, J.; Zhou, Y.; Ye, B.; Xie, Y. J. Am. Chem. Soc. 2015, 137, 3102.
[12] Hu, X.; Zhang, X. D.; Xie, Y. Scientia Sinica Chimica 2015, 45, 234. (胡鑫, 张晓东, 谢毅, 中国科学:化学, 2015, 45, 234.)
[13] Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Chem. Soc. Rev. 2015, 44, 2664.
[14] Xiao, C.; Li, Z.; Xie, Y. Chinese J. Inorg. Chem. 2014, 30, 10. (肖翀, 李周, 谢毅, 无机化学学报, 2014, 30, 10)
[15] Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. ACS Nano 2012, 6, 7311.
[16] Yang, D.; Frindt, R. F. J. Phys. Chem. Solids 1996, 57, 1113.
[17] Mattheiss, L. F. Phys. Rev. B 1973, 8, 3719.
[18] Alla, Z.; Yishay, F.; Vera, L.; Gregory, L.; Ronit, P.; Ellen, W.; Hagai, C.; Shimon, R.; Reshef, T. J. Am. Chem. Soc. 2002, 124, 4747.
[19] Kappera, R.; Voiry, D.; Yalcin, S. E.; Jen, W.; Acerce, M.; Torrel, S.; Branch, B.; Lei, S.; Chen, W.; Najmaei, S.; Lou, J.; Ajayan, P. M.; Gupta, G.; Mohite, A. D.; Chhowalla, M. APL Mater. 2014, 2, 092516.
[20] Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Nat. Mater. 2014, 13, 1128.
[21] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Nano Lett. 2011, 11, 5111.
[22] Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nano Lett. 2013, 13, 6222.
[23] Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater. 2013, 12, 850.
[24] Acerce, M.; Voiry, D.; Chhowalla, M. Nat. Nanotechnol. doi: 10.1038/NNANO.2015.40
[25] Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J.; Brinker, C. J.; Dravid, V. P. Angew. Chem. Int. Ed. 2013, 52, 4160.
[26] Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. ACS Nano 2014, 8, 6922.
[27] Xu, B.; Lin, B.; Sun, D.; Ding, C. Electrochim. Acta 2007, 52, 3028.
[28] Xu, B.; Lin, B.; Sun, D.; Ding, C.; Liu, X.; Xiao, Z. Mater. Res. Bull. 2007, 42, 1633.
[29] Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Phys. Rev. B 2010, 82, 180520.
[30] Krzton-Maziopa, A.; Shermadini, Z.; Pomjakushina, E.; Pomjakushin, V.; Bendele, M.; Amato, A.; Khasanov, R.; Luetkens, H.; Conder, K. J. Phys.: Condens. Matter 2011, 23, 052203.
[31] Fang, M.-H.; Wang, H.-D.; Dong, C.-H.; Li, Z.-J.; Feng, C.-M.; Chen, J.; Yuan, H. Q. EPL 2011, 94, 27009.
[32] Burrard-Lucas, M.; Free, D. G.; Sedlmaier, S. J.; Wright, J. D.; Cassidy, S. J.; Hara, Y.; Corkett, A. J.; Lancaster, T.; Baker, P. J.; Blundell, S. J.; Clarke, S. J. Nat. Mater. 2013, 12, 15.
[33] MacKay, R. A. Introduction to Modern Inorganic Chemistry, 6th ed., CRC Press, Boca Raton, FL, 2002.
[34] Rosen, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5606.
[35] Coetzee, J. F.; Siao, W. S. Inorg. Chem. 1963, 2, 14.
[36] Kristie, J. K.; Judy, J. C.; Bryan, W. R.; Colin, D. W.; Kong, D. S.; Cui, Y. J. Am. Chem. Soc. 2012, 134, 7584.
[37] Kong, D.; Dang, W.; Cha, J. J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Nano Lett. 2010, 10, 2245.
[38] Leapman, R. D.; Grunes, L. A.; Fejes, P. L. Phys. Rev. B 1982, 26, 614.
[39] Hüfner, S. Photoelectron Spectroscopy: Principles and Applications, 3rd ed., Springer, Berlin, 2003.
[40] Panzner, G.; Egert, B.; Schmidt, H. P. Surf. Sci. 1985, 151, 400.
[41] Progress in Intercalation Research, Eds.: Müller-Warmuth, W.; Schöllhorn, R., Kluwer Academic, Dordrecht, The Netherlands, 1994.
[42] NATO. ASI Series, Subseries B, Intercalation in Layered Materials, Physics, Ed.: Dresselhaus, M. S., 1987, p. 148.
[43] Intercalated Layered Materials, Ed.: Levy, F., Reidel, Dordrecht, The Netherlands, 1979.
[44] Jie, Y.; Kristie, J. K.; Luo, W. D.; Judy, J. C.; Hu, L. B.; Kong, D. S.; Narasimhan, V. K.; Huo, K. F.; Cui, Y. Nat. Commun. 2014, 5, 5670.
[45] Kristie, J. K.; Colin, D. W.; Bryan, W. R.; Judy, J. C.; Kong, D. S. Cui, Y. J. Am. Chem. Soc. 2012, 134, 13773.
[46] Janina, P. M.; Kristie, J. K.; Cui, Y. Chem. Mater. 2014, 26, 2313.
[47] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[48] Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.
[49] Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
[50] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.
[51] Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
[52] Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
[53] Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Finer, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
[54] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
[55] Hummers, W. S.; OfFeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[56] Zhu, H. O.; Qin, X M.; Sun, X.; Yan, W. S.; Yang, J. L.; Xie, Y. Sci. Rep. 2013, 3, 1246
[57] Zhu, H. O.; Xiao, C.; Cheng, H.; Fabian, G.; Zhang, X. D.; Yao, T.; Li, Z.; Wang, C. M.; Wei, S. Q.; Lei, Y.; Xie, Y. Nature Commun. 2014, 5, 3960
[58] Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559.
[59] Welbes, L. L.; Borovik, A. S. Acc. Chem. Res. 2005, 38, 765.
[60] Allouche, J.; Boissiere, M.; Helary, C.; Livage, J.; Coradin, T. J. Mater. Chem. 2006, 16, 3120.
[61] Andrade, G.; Barbosa-Stancioli, E. F.; Mansur, A. A. P.; Vasconcelos, W. L.; Mansur, H. S. Biomed. Mater. 2006, 1, 221.
[62] Adina Arvinte, A. S.; Vesa, V.; Camelia, B. Electroanalysis 2008, 20, 2355.
[63] Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Ed. 2008, 47, 2930.
[64] Hatchett, D. W.; Josowicz, M. Chem. Rev. 2008, 108, 746.
[65] Yao, H.; Gao, M.; Yu, S. Nanoscale 2010, 2, 323.
[66] Huang, X.; Li, J. J. Am. Chem. Soc. 2007, 129, 3157.
[67] Zhang, X.; Hejazi, M.; Thiagarajan, S. J.; Woerner, W. R.; Banerjee, D.; Emge, T. J.; Xu, W.; Teat, S. J.; Gong, Q.; Safari, A.; Yang, R.; Parise, J. B.; Li, J. J. Am. Chem. Soc. 2013, 135, 17401.
[68] Yao, H. B.; Yao, W. T.; Gao, M. R.; Yu, S. H. J. Am. Chem. Soc. 2009, 131, 7486.
/
| 〈 |
|
〉 |