Iodosodilactone as a Recyclable Oxidant for Efficient Oxidation of Alcohols to Carbonyl Compounds
Received date: 2015-05-24
Online published: 2015-07-17
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21172110, 21472094, 21421062).
Various primary alcohols can be selectively oxidized to the corresponding aldehydes in excellent yields by iodosodilactone in the presence of a nitroxyl radical catalyst 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) and stoichiometric amount of 4-dimethylaminopyridine (DMAP) in chloroform under reflux. On the other hand, secondary alcohols can be oxidized to the corresponding ketones efficiently with a structurally less hindered nitroxyl radical catalyst 1-methyl-2-azaadamantane N-oxyl (1-Me-AZADO) instead of TEMPO. The mechanism of this alcohol oxidation reaction has been proposed. First, a zwitterion intermediate A was formed after the ligand exchange around the iodine(III) atom; then A would oxidize the nitroxyl radical TEMPO to its oxoammonium salt C, which was responsible for the oxidation of alcohols and was reduced to the hydroxylamine D. Finally, D was oxidized by A to C to re-start the next alcohol oxidation cycle. Note that both DMAP and 2-iodo-isophthalic acid (the reduced form of iodosodilactone) can be recovered easily after reaction. A representative procedure for the alcohols oxidation and the recovery of DMAP and the regeneration of iodosodilactone are as follows: Iodosodilactone (217 mg, 0.75 mmol) was added to a solution of an alcohol (0.5 mmol), TEMPO (7 mg, 0.04 mmol) and DMAP (73 mg, 0.6 mmol) in CHCl3 (5 mL) at room temperature, the reaction mixture was refluxed until the alcohol was no longer detected (TLC). Then the mixture was cooled to room temperature, filtered and washed with CH2Cl2 (60 mL). The filtrate was washed sequentially with 1 mol/L HCl, 10% Na2CO3, and brine. Then the organic layer was dried over anhydrous Na2SO4 and concentrated in vacuum. Flash column chromatography was applied to give the corresponding pure carbonyl compound. The residue collected during the previous filtration step was stirred in aqueous HCl (5%, 50 mL) and then filtered. The obtained aqueous phase was neutralized to pH 8~9 by saturated aqueous NaOH solution to release DMAP, then DMAP was extracted with CH2Cl2 (30 mL×3), the organic layer was dried over anhydrous Na2SO4 and concentrated in vacuum to afford the recovered DMAP in 90% yield. At last, the treatment of the combination of the aqueous phase after CH2Cl2 extraction and the residue collected in the latest filtration with concentrated HCl (2 mL) and aqueous NaClO solution (5.84%, 4 mL) led to the regeneration of oxidant iodosodilactone in 93% yield.
Song Airu , Zhang Chi . Iodosodilactone as a Recyclable Oxidant for Efficient Oxidation of Alcohols to Carbonyl Compounds[J]. Acta Chimica Sinica, 2015 , 73(10) : 1002 -1006 . DOI: 10.6023/A15050355
[1] (a) March, J. Advanced Organic Chemistry, Chapter 19, 4th ed., John Wiley & Sons, New York, 1992.
(b) Comprehensive Organic Functional Group Transformations, Vols. 3, 5, Eds.: Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.; Pattenden, G.; Moody, C. J., Elsevier Science, Oxford, 1995.
(c) Larock, R. C. Comprehensive Organic Transformations, 2nd ed., Wiley, New York, 1999.
(d) Tojo, G.; Fernández, M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice, Springer, New York, 2006.
(e) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943.
(f) Shi, X.; Han, X.; Ma, W.; Wei, J. Chin. J. Org. Chem. 2011, 31(3), 297. (石先莹, 韩晓燕, 马文娟, 魏俊发, 有机化学, 2011, 31(3), 297.).
(g) Zhao, G.; Lv, Y.; Xi, Z.; Gao, S. Chemistry 2004, 67(3), w89. (赵公大, 吕迎, 奚祖威, 高爽, 化学通报, 2004, 67(3), w89.)
[2] For reviews and a paper on hypervalent iodine compounds in the oxidation of alcohols, see: (a) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111.
(b) Uyanik, M.; Ishihara, K. Chem. Commun 2009, 2086.
(c) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251.
(d) Uyanik, M.; Ishihara, K. Aldrichim. Acta 2010, 43, 83.
(e) Singh, F. V.; Wirth, T. Chemistry-An Asian Journal 2014, 9(4), 950.
(f) Sheng, Q. J.; Liu, G. R.; Luo, H. Q.; Liu, Z. Q. Chin. J. Org. Chem. 2007, 27(7), 902. (盛秋菊, 刘桂荣, 罗海清, 柳忠全, 有机化学, 2007, 27(7), 902.)
[3] (a) Gerhard, S.; Anne, M.; Guenther, J.; Joerg, R. Angew. Chem. Int. Ed. 2001, 40, 4395.
(b) Tesevic, V.; Gladysz, J. A. J. Org. Chem. 2006, 71, 7433.
(c) Yusubov, M. S.; Gilmkhanova, M. P.; Zhdankin, V. V.; Kirscning, A. Synlett 2007, 4, 563.
(d) Telvekar, V. N.; Herlekar, O. P. Synth. Commun. 2007, 37, 859.
(e) Yoshimura, A.; Banek, C. T.; Yusubov, M. S.; Nemykin, V. N.; Zhdankin, V. V. J. Org. Chem. 2011, 76, 3812.
(f) Dohi, T.; Kamitanaka, T.; Mochizuki, E.; Ito, M.; Kita, Y. Chem. Pharm. Bull. 2012, 60(11), 1442.
(g) Zhu, C. J.; Wei, Y. Y.; Ji, L.; Zhang, Q. Chinese J. Appl. Chem. 2010, 27(3), 267. (朱晨杰, 魏运洋, 计磊, 张倩, 应用化学, 2010, 27(3), 267.) See also earlier work cited in these accounts dealing with recyclable hypervalent iodine reagent for the oxidation of alcohols.
[4] (a) Sakuratani, K.; Togo, H. Synthesis 2003, 21.
(b) Tohma, H.; Maruyama, A.; Maeda, A.; Maegawa, T.; Dohi, T.; Shiro, M.; Morita, T.; Kita, Y. Angew. Chem. Int. Ed. 2004, 43, 3595.
(c) Moroda, A.; Togo, H. Tetrahedron 2006, 62, 12408.
(d) Herrerias, C. I.; Zhang, T. Y.; Li, C. J. Tetrahedron Lett. 2006, 47(1), 13.
(e) Li, X. Q., Zhang C. Synthesis 2009, 1163.
(f) Dohi, T.; Fukushima, K.; Kamitanaka, T.; Morimoto, K.; Takenaga, N.; Kita, Y. Green Chem. 2012, 14, 1493.
(g) Zhu, C. J.; Yoshimura, A.; Wei, Y. Y.; Nemykin, V. N.; Zhdankin, V. V. Tetrahedron Lett. 2012, 53, 1438.
(h) Zhu, C. J.; Wei, Y. Y. Adv. Synth. Catal. 2012, 354, 313.
(i) Ambreen, N.; Kumar, R.; Wirth, T. Beilstein J. Org. Chem. 2013, 9, 1437.
[5] Zhao, X. F.; Zhang, C. Synthesis 2007, 4, 551.
[6] Tian, J.; Gao, W. C.; Zhou, D. M.; Zhang, C. Org. Lett. 2012, 14(12), 3020.
[7] (a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412.
(b) Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61, 1197. For literatures concerning the successful application of AZADO, a close analogue of 1-Me-AZADO, in the total synthesis of several complex natural products, see:
(c) Sun, Y.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A. Angew. Chem. Int. Ed. 2014, 53, 9012.
(d) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185.
(e) Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Nat. Commun. 2015, 6, 6096.
[8] De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974.
[9] Weiss, R.; Seubert, J. Angew. Chem. Int. Ed. 1994, 33, 891.
[10] Zhdankin, V. V.; Koposov, A. Y.; Yashin, N. V. Tetrahedron Lett. 2002, 43, 5735.
[11] (a) De Nooy, A. E. J.; Beswmer, A. C.; Van Bekkum, H. Synthesis 1996, 1153.
(b) Adam, W.; Saha-Möller, C. R.; Ganeshpure, P. A. Chem. Rev. 2001, 101, 3499.
(c) Vogler, T.; Studer, A. Synthesis 2008, 1979.
[12] For the direct oxidation of a hydroxylamine to its oxoammonium salt, see: (a) Fey, T.; Fischer, H.; Bachmann, S.; Albert, K.; Bolm, C. J. Org. Chem. 2001, 66, 8154.
(b) Sheldon, R. A.; Arends, I. Adv. Synth. Catal. 2004, 346, 1051.
/
〈 |
|
〉 |