Article

Phonon-assisted Upconversion Photoluminescence in Monolayer MoSe2 and WSe2

  • Xu Weigao ,
  • Zhao Yanyuan ,
  • Shen Chao ,
  • Zhang Jun ,
  • Xiong Qihua
Expand
  • a Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371;
    b NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Received date: 2015-03-30

  Online published: 2015-05-19

Supported by

Project supported by the Singapore National Research Foundation via a fellowship grant (No. NRF-RF2009-06), Ministry of Education via a Tier 2 grant (No. MOE2012-T2-2-086) and Nanyang Technological University via a start-up grant support (No. M58110061).

Abstract

Phonon-assisted upconversion photoluminescence is the basis of laser cooling effect in solids. Compared to conventional cooling methods, laser cooling has many advantages such as compactness, high efficiency, free of vibrational disturbance and refrigerant-free, etc. Exploring more semiconducting materials in which a net cooling effect can be observed is an important area among the laser cooling community. Monolayer two-dimensional transition metal dichalcogenides (TMDs) like MoSe2 and WSe2 are direct band gap semiconductors. The perfect crystal structure and high extraction efficiency (due to thickness at atomic level) guarantee them the possibility to be potential candidates for laser cooling. In this work, with a Ti-sapphire tunable laser (pumped by a 532 nm laser), we studied the upconversion photoluminescence and its wavelength-dependence. In detail, we implemented experiments on laser power-dependent photoluminescence intensity, the linearity fitting results (at low power) show that it is a phonon-assisted upconversion photoluminescence process; furthermore, this mechanism is also verified from the temperature-dependent upconversion photoluminescence intensity. Further experiments on the investigation of which kinds of phonons are involved in the upconversion process and its efficiency, as well as the design of a sample structure that is free of background absorbance, are still required to help to tell whether net laser cooling can be achieved, or how it can be achieved in monolayers TMDs.

Cite this article

Xu Weigao , Zhao Yanyuan , Shen Chao , Zhang Jun , Xiong Qihua . Phonon-assisted Upconversion Photoluminescence in Monolayer MoSe2 and WSe2[J]. Acta Chimica Sinica, 2015 , 73(9) : 959 -964 . DOI: 10.6023/A15030216

References

[1] Pringsheim, P. Zeitschrift für Physik 1929, 57, 739.
[2]
(a) Epstein, R. I.; Buchwald, M. I.; Edwards, B. C.; Gosnell, T. R.; Mungan, C. E. Nature 1995, 377, 500;
(b) Seletskiy, D. V.; Melgaard, S. D.; Bigotta, S.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Nat. Photonics 2010, 4, 161;
(c) Seletskiy, D. V.; Melgaard, S. D.; Epstein, R. I.; Di Lieto, A.; Tonelli, M.; Sheik-Bahae, M. Opt. Express 2011, 19, 18229.
[3]
(a) Zhang, J.; Li, D. H.; Chen, R. J.; Xiong, Q. H. Nature 2013, 493, 504;
(b) Li, D. H.; Zhang, J.; Xiong, Q. H. Opt. Express 2013, 21, 19302;
(c) Li, D. H.; Zhang, J.; Wang, X. J.; Huang, B. L.; Xiong, Q. H. Nano Lett. 2014, 14, 4724.
[4] Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotechnol. 2012, 7, 699.
[5]
(a) Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E.; Liu, B. L.; Feng, J. Nat. Commun. 2012, 3, 887;
(b) Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Nat. Nanotechnol. 2012, 7, 490.
[6] Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. D. Nature Physics 2015, 11, 148.
[7]
(a) Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2014, 13, 1096;
(b) Feng, Q.; Zhu, Y.; Hong, J.; Zhang, M.; Duan, W.; Mao, N.; Wu, J.; Xu, H.; Dong, F.; Lin, F.; Jin, C.; Wang, C.; Zhang, J.; Xie, L. Adv. Mater. 2014, 26, 2648, 2613.
[8] Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Yao, W.; Xu, X. Nat. Commun. 2015, 6, 6242.
[9] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8, 497.
[10] Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vu?kovi?, J.; Majumdar, A.; Xu, X. D. Nature 2015, 520, 69.
[11] Nemova, G.; Kashyap, R. Rep. Prog. Phys. 2010, 73, 086501.
[12]
(a) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73;
(b) Chen, G. Y.; Qju, H. L.; Prasad, P. N.; Chen, X. Y. Chem. Rev. 2014, 114, 5161.
[13] Khurgin, J. B. Phys. Rev. B 2008, 77, 235206.
[14]
(a) Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Phys. Rev. B 2013, 87, 165409;
(b) Luo, X.; Zhao, Y. Y.; Zhang, J.; Toh, M. L.; Kloc, C.; Xiong, Q. H.; Quek, S. Y. Phys Rev. B 2013, 88, 195313.
[15] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451.
[16] Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S.; Xiong, Q. H. Nano Lett. 2013, 13, 1007.

Outlines

/