Article

Tandem Heck Reaction of Tertiary Enamides: A Novel Access to trans-2,5-Disubstituted-3-Pyrroline Derivatives

  • He Ling ,
  • Gu Mengdi ,
  • Wang Dexian ,
  • Zhao Liang ,
  • Wang Meixiang
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084

Received date: 2015-06-08

  Online published: 2015-08-18

Supported by

Project supported by the National Natural Science Foundation of China (No. 21320102002).

Abstract

3-Pyrroline structure is a common scaffold in natural products and synthetic bioactive molecules. 3-Pyrroline derivatives are also important intermediates in organic synthesis. The synthetic study of 3-pyrroline compounds has therefore always attracted great attention. Tertiary enamides are a class of unique and versatile synthons. They are able to participate in intramolecular and intermolecular reactions with various electrophiles, affording diverse nitrogen-containing heterocyclic compounds. Recently, we attempted the Heck reaction of the five-membered cyclic tertiary enamides and discovered the formation of α-arylated product with the double bond being shifted. We then envisioned a tandem diarylation reaction to synthesize 2,5-disubstituted-3-pyrroline derivatives. Herein, we reported the investigation of the Heck reaction of cyclic tertiary enamides, a simple and convenient approach to trans-2,5-disubstituted-3-pyrrolines. Silver salts were found to be effective additives to accelerate the reaction, while PdCl2(PPh3)2 appeared as the best catalyst to improve the regioselectivity. Under the optimized conditions, a variety of differently substituted aryl iodides reacted smoothly with N-benzoyl-2,3- dihydro-1H-pyrrole 2a to afford the desired products 4a4k in moderate to high yields. Other N-substituted enamide substrates 2b2e underwent similar tandem reactions to give the corresponding products in moderate chemical yields. A representative procedure for this reaction is as follows: to an oven-dried Schlenk tube was successively added PdCl2(PPh3)2 (18 mg, 0.025 mmol, 5 mol%), AgNO3 (177 mg, 1.05 mmol, 2.1 equiv.), DABCO (168 mg, 1.5 mmol, 3.0 equiv.) and dry DMA (1.0 mL) under argon atmosphere. After stirring for 5 min at room temperature and the mixture turned black, aryl iodides 1a1l (1.05 mmol) in DMA (1.0 mL) was introduced into the tube, following the addition of substrate 2a2f (0.50 mmol) in DMA (1.0 mL). The resulting mixture was stirred at 80 ℃ until starting enamides and mono-arylated compounds were consumed, which was monitored by TLC analysis. After filtration, extraction and concentration in vacuo, the reaction residue was flash chromatographed on a silica gel column eluted with a mixture of petroleum ether and ethyl acetate (V:V=6:1) to give the pure product 4a4p. The resulting trans-2,5-diphenyl-3-pyrroline was converted to pyrrole and pyrrolidine derivative, respectively, by oxidation and reduction.

Cite this article

He Ling , Gu Mengdi , Wang Dexian , Zhao Liang , Wang Meixiang . Tandem Heck Reaction of Tertiary Enamides: A Novel Access to trans-2,5-Disubstituted-3-Pyrroline Derivatives[J]. Acta Chimica Sinica, 2015 , 73(10) : 1018 -1024 . DOI: 10.6023/A15060400

References

[1] For recent reviews of pyrroline, pyrrole, pyrrolidine containing natural products see: (a) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
(b) Mauger, A. B. J. Nat. Prod. 1996, 59, 1205.
(c) Haslam, E. Shikimic Acid Metabolism and Metabolites, Wiley, New York, 1993.

[2] Chan, G. W.; Francis, T.; Thureen, D. R.; Offen, P. H.; Pierce, N. J.; Westley, J. W.; Johnson, R. K. J. Org. Chem. 1993, 58, 2544.

[3] Hamasaki, A.; Zimpleman, J. M.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2005, 127, 10767.

[4] Cox, C. D.; Coleman, P. J.; Breslin, M. J.; Whitman, D. B.; Garbaccio, R. M.; Fraley, M. E.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.; Davide, J. P.; Diehl, R. E.; Abrams, M. T.; South, V. J.; Huber, H. E.; Torrent, M.; Prueksaritanont, T.; Li, C.; Slaughter, D. E.; Mahan, E.; Fernandez-Metzler, C.; Yan, Y.; Kuo, L. C.; Kohl, N. E.; Hartman, G. D. J. Med. Chem. 2008, 51, 4239.

[5] Ozawa, M.; Etoh, T.; Hayashi, M.; Komiyama, K.; Kishida, A.; Ohsaki, A. Bioorg. Med. Chem. Lett. 2009, 19, 234.

[6] Examples of 3-pyrrolines in the synthesis of natural products or as analgous of pharmaceutically relevant compounds: (a) Huwe, C. M.; Blechert, S. Tetrahedron Lett. 1995, 36, 1621.
(b) Bondzi?, B. P.; Eilbracht, P. Org. Lett. 2008, 10, 3433.
(c) Sampath, M.; Beatrix Lee, P.-Y.; Loh, T.-P. Chem. Sci. 2011, 2, 1988.
(d) Mycock, D. K.; Glossop, P. A.; Lewis, W.; Hayes, C. J. Tetrahedron Lett. 2013, 54, 55.
(e) Huang, P.-Q.; Ou, W.; Ye, J.-L. Chin. J. Chem. 2015, 33, 655.

[7] For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives using [3+2] cycloaddition of imines and allenes: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(b) Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276.
(c) Zhao, G.-L.; Shi, M. J. Org. Chem. 2005, 70, 9975.
(d) Zheng, S.; Lu, X. Org. Lett. 2008, 10, 4481.

[8] For example of synthesis of 2,5-disubstituted 3-pyrroline derivatives using [3+2] cycloaddition of imines with alkynes: Meng, L.-G.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 8491.

[9] For an example of synthesis of 2,5-disubstituted 3-pyrroline derivatives via ring closing metathesis of diallyl amines: Evans, P. A.; Robinson, J. E. Org. Lett. 1999, 1, 1929.
[10] For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives using cyclization of amino allenes: (a) Dieter, R. K.; Yu, H. Org. Lett. 2001, 3, 3855.
(b) Xu, T.; Mu, X.; Peng, H.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 8176.
(c) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. J. Org. Chem. 1999, 64, 2992.
(d) Ma, S.; Yu, F.; Gao, W. J. Org. Chem. 2003, 68, 5943.
(e) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634.
(f) Ohno, H.; Kadoh, Y.; Fujii, N.; Tanaka, T. Org. Lett. 2006, 8, 947.
(g) Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2013, 15, 1626.
[11] For selected examples of synthesis of 2,5-disubstituted 3-pyrroline derivatives via [3+2] cycloaddition of alkynes with aziridines: (a) Anderson, W. K.; Milowsky, A. S. J. Med. Chem. 1986, 29, 2241.
(b) Li, L.; Zhang, J. Org. Lett. 2011, 13, 5940.
[12] For reviews on reactivity of enamides see: (a) Carbery, D. R. Org. Biomol. Chem. 2008, 6, 3455.
(b) Gopalaiah, K.; Kagan, H. B. Chem. Rev. 2011, 111, 4599.
[13] For a recent review on reactivity of tertiary enamides see: Wang, M.-X. Chem. Commun. 2015, 51, 6039.
[14] Yang, L.; Zheng, Q.-Y.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2008, 10, 2461.
[15] Tong, S.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Angew. Chem., Int. Ed. 2012, 51, 4417.
[16] (a) Yang, L.; Lei, C.-H.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Org. Lett. 2010, 12, 3918.
(b) Yang, L.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Am. Chem. Soc. 2009, 131, 10390.
[17] Tong, S.; Yang, X.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Tetrahedron 2012, 68, 6492.
[18] (a) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. J. Am. Chem. Soc. 2013, 135, 4708.
(b) Lei, C.-H.; Wang, D.-X.; Zhao, L.; Zhu, J.; Wang, M.-X. Chem. Eur. J. 2013, 19, 16981.
(c) Lei, C.-H.; Zhao, L.; Wang, D.-X.; Zhu, J.; Wang, M.-X. Org. Chem. Front. 2014, 1, 909.
[19] He, L.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2014, 16, 5972.
[20] He, L.; Liu, H.-B.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2015, 71, 523.
[21] For selected examples of applications of Heck reaction of tertiary enamides in total synthesis of natural products: (a) Kawagishi, F.; Toma, T.; Inui, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2013, 135, 13684.
(b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
[22] For recent review of Heck reaction of tertiary enamides see: (a) Cartney, D. M.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122.
(b) Li, H.; Ding, C.; Xu, B.; Hou, X. Acta Chim. Sinica 2014, 72, 765. (李浩, 丁昌华, 许斌, 侯雪龙, 化学学报, 2014, 72, 765.)
(c) Shibasaki, M.; Vogl, E. M.; Ohshima, T. Adv. Synth. Catal. 2004, 346, 1533.
[23] For selected examples of Heck reaction of five-membered tertiary enamides: (a) Nilsson, K.; Hallberg, A. J. Org. Chem. 1990, 55, 2464.
(b) Severino, E. A.; Correia, C. R. D. Org. Lett. 2000, 2, 3039.
(c) Oliveira, D. F.; Severino, E. A.; Correia, C. R. D. Tetrahedron Lett. 1999, 40, 2083.
(d) Severino, E. A.; Costenaro, E. R.; Garcia, A. L. L.; Correia, C. R. D. Org. Lett. 2003, 5, 305.
[24] For selected examples of enantioselective Heck reaction of five-membered tertiary enamides: (a) Hayashi, T.; Kubo, A.; Ozawa, F. Pure Appl. Chem. 1992, 64, 421.
(b) Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis 1997, 1338.
(c) Mazuela, J.; Pàmies, O.; Diéguez, M. Chem. Eur. J. 2010, 16, 3434.
(d) Hu, J.; Lu, Y.; Li, Y.; Zhou, J. Chem. Commun. 2013, 49, 9425.
(e) Wu, C.; Zhou, J. J. Am. Chem. Soc. 2014, 136, 650.
[25] Wheatley, B. M. M.; Keay, B. A. J. Org. Chem. 2007, 72, 7253.
[26] (a) Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A. Tetrahedron Lett. 1991, 132, 687.
(b) Ripa, L.; Hallberg, A. J. Org. Chem. 1997, 62, 595.
[27] Tu, T.; Hou, X.-L.; Dai, L.-X. Org. Lett. 2003, 5, 3651.
[28] Tietze, L. F.; Thede, K. Synlett 2000, 10, 1470.
[29] For selected examples of Heck reactions of 5-substituted five-membered tertiary enamides see 23(b) and 23(d).
[30] Oestreich, M. The Mizoroki-Heck Reaction, John Wiley & Sons, Ltd., 2009
[31] For details, see Table S1 in supporting information.
[32] For details, see Table S2 in supporting information.
[33] Crystallographic data of compound 4b and 4j see supporting information.
[34] Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.

Outlines

/