Review

Preparation and Applications of Two-Dimensional Crystals Based on Organic or Metal-Organic Materials

  • Li Shaozhou ,
  • Huang Xiao ,
  • Zhang Hua
Expand
  • a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023;
    b Key Laboratory of Flexible Electronics KLOFE & Institute of Advanced Materials IAM, Jiangsu National Synergistic Innovation Center for Advanced Materials SICAM, Nanjing Tech University NanjingTech, Nanjing 211816;
    c School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Received date: 2015-03-31

  Online published: 2015-05-21

Supported by

This work was supported by MOE under AcRF Tier 2 (ARC 26/13, No. MOE2013-T2-1-034; ARC 19/15, No. MOE2014-T2-2-093) and AcRF Tier 1 (RGT18/13, RG5/13), NTU under Start-Up Grant (M4081296.070.500000) and iFood Research Grant (M4081458.070.500000), Singapore Millennium Foundation in Singapore, and the National Natural Science Foundation of China (GZ213054, 51322202) in China, and the Natural Science Foundation of Jiangsu Province (BK20130927). This research grant is supported by the Singapore National Research Foundation under its Environmental & Water Technologies Strategic Research Programme and administered by the Environment & Water Industry Programme Office (EWI) of the PUB. This Research is also conducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE), that is supported by the National Research Foundation, Prime Minister's Office, Singapore.

Abstract

Besides graphene and transitional metal dichalcogenide nanosheets which have aroused tremendous research interest over the last decade, recently, two-dimensional (2D) organic or metal-organic nanosheets have also attracted increasing research interest. These ultrathin nanomaterials possess the long range structural order, the tunable surface properties, and/or controllable porosity, making them promising in a wide range of applications, such as electronics, optoelectronics, catalysis, molecular separation and so on. This review article aims to provide a brief overview on free-standing 2D nanosheets of organic or metal-organic materials that have been reported so far, especially focusing on their synthetic methods and possible applications.

Cite this article

Li Shaozhou , Huang Xiao , Zhang Hua . Preparation and Applications of Two-Dimensional Crystals Based on Organic or Metal-Organic Materials[J]. Acta Chimica Sinica, 2015 , 73(9) : 913 -923 . DOI: 10.6023/A15030221

References

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[2] Huang, X.; Tan, C.; Yin, Z.; Zhang, H. Adv. Mater. 2014, 26, 2185.
[3] Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev. 2013, 113, 3766.
[4] Tan, C.; Zhang, H. Chem. Soc. Rev. 2015, 44, 2713.
[5] Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. J. Am. Chem. Soc. 1996, 118, 8329.
[6] Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
[7] Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 11093.
[8] Ma, R.; Liu, Z.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257.
[9] Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Nano Lett. 2012, 12, 4674.
[10] Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nat. Nanotechnol. 2013, 8, 826.
[11] Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J. Am. Chem. Soc. 2014, 136, 7077.
[12] Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlueter, A. D. Angew. Chem. Int. Ed. 2009, 48, 1030.
[13] Ulman, A. Chem. Rev. 1996, 96, 1533.
[14] Govindaraju, T.; Avinash, M. B. Nanoscale 2012, 4, 6102.
[15] Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565.
[16] Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.
[17] Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. J. Am. Chem. Soc. 2013, 135, 2462.
[18] Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103.
[19] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[20] Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gomez-Garcia, C. J.; Mateo-Marti, E.; Martinez, J. I.; Flores, F.; Gomez-Navarro, C.; Gomez-Herrero, J.; Delgado, S.; Zamora, F. Adv. Mater. 2013, 25, 2141.
[21] Li, P.-Z.; Maeda, Y.; Xu, Q. Chem. Commun. 2011, 47, 8436.
[22] Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1420.
[23] Nielsen, R. B.; Kongshaug, K. O.; Fjellvag, H. J. Mater. Chem. 2008, 18, 1002.
[24] Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[25] Berlanga, I.; Luisa Ruiz-Gonzalez, M.; Maria Gonzalez-Calbet, J.; Fierro, J. L. G.; Mas-Balleste, R.; Zamora, F. Small 2011, 7, 1207.
[26] Berlanga, I.; Mas-Balleste, R.; Zamora, F. Chem. Commun. 2012, 48, 7976.
[27] Bunck, D. N.; Dichtel, W. R. J. Am. Chem. Soc. 2013, 135, 14952.
[28] Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 17853.
[29] Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. Nat. Chem. 2014, 6, 774.
[30] Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Goetzinger, S.; Schlueter, A. D.; Sakamoto, J. Nat. Chem. 2012, 4, 287.
[31] Saines, P. J.; Steinmann, M.; Tan, J.-C.; Yeung, H. H. M.; Li, W.; Barton, P. T.; Cheetham, A. K. Inorg. Chem. 2012, 51, 11198.
[32] Saines, P. J.; Tan, J.-C.; Yeung, H. H. M.; Barton, P. T.; Cheetham, A. K. Dalton Trans. 2012, 41, 8585.
[33] Tan, J.-C.; Saines, P. J.; Bithell, E. G.; Cheetham, A. K. ACS Nano 2012, 6, 615.
[34] Nie, W.-X.; Bao, S.-S.; Zeng, D.; Guo, L.-R.; Zheng, L.-M. Chem. Commun. 2014, 50, 10622.
[35] Araki, T.; Kondo, A.; Maeda, K. Chem. Commun. 2013, 49, 552.
[36] Gai, S.; Li, C.; Yang, P.; Lin, J. Chem. Rev. 2014, 114, 2343.
[37] Makiura, R.; Kitagawa, H. Eur. J. Inorg. Chem. 2010, 3715.
[38] Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 5640.
[39] Makiura, R.; Konovalov, O. Sci. Rep. 2013, 3, 2506.
[40] Makiura, R.; Usui, R.; Sakai, Y.; Nomoto, A.; Ogawa, A.; Sakata, O.; Fujiwara, A. Chempluschem 2014, 79, 1352.
[41] Zasadzinski, J. A.; Viswanathan, R.; Madsen, L.; Garnaes, J.; Schwartz, D. K. Science 1994, 263, 1726.
[42] Bauer, T.; Zheng, Z.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlueter, A. D. Angew. Chem. Int. Ed. 2011, 50, 7879.
[43] Robertson, E. J.; Oliver, G. K.; Qian, M.; Proulx, C.; Zuckermann,R. N.; Richmond, G. L. Proc. Natl. Acad. Sci. USA 2014, 111, 13284.
[44] Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J.; Johnson, C. J.; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A.; Goetzinger, S.; Ceroni, P.; Schuetz, A.; Lee, L.-T.; Zheng, Z.; Sakamoto, J.; Schlueter, A. D. Adv. Mater. 2014, 26, 2052.
[45] Sugiyama, Y.; Okamoto, H.; Mitsuoka, T.; Morikawa, T.; Nakanishi, K.; Ohta, T.; Nakano, H. J. Am. Chem. Soc. 2010, 132, 5946.
[46] Nakano, H. J. Ceram. Soc. JPN 2014, 122, 748.
[47] Eck, W.; Kuller, A.; Grunze, M.; Volkel, B.; Golzhauser, A. Adv. Mater. 2005, 17, 2583.
[48] Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. J. Am. Chem. Soc. 2013, 135, 6157.
[49] Nam, K. T.; Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.; Tan, L.; Chu, T. K.; Mesch, R. A.; Lee, B.-C.; Connolly, M. D.; Kisielowski, C.; Zuckermann, R. N. Nat. Mater. 2010, 9, 454.
[50] Sanii, B.; Kudirka, R.; Cho, A.; Venkateswaran, N.; Olivier, G. K.; Olson, A. M.; Tran, H.; Harada, R. M.; Tan, L.; Zuckermann, R. N. J. Am. Chem. Soc. 2011, 133, 20808.
[51] Kudirka, R.; Tran, H.; Sanii, B.; Ki Tae, N.; Choi, P. H.; Venkateswaran, N.; Chen, R.; Whitelam, S.; Zuckermann, R. N. Biopolymers 2011, 96, 586.
[52] Hamley, I. W.; Dehsorkhi, A.; Castelletto, V. Chem. Commun. 2013, 49, 1850.
[53] An, Q.; Chen, Q.; Zhu, W.; Li, Y.; Tao, C.-a.; Yang, H.; Li, Z.; Wan, L.; Tian, H.; Li, G. Chem. Commun. 2010, 46, 725.
[54] Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. J. Am. Chem. Soc. 2013, 135, 6523.
[55] Kim, Y.; Kim, H.; Ko, Y. H.; Selvapalam, N.; Rekharsky, M. V.; Inoue, Y.; Kim, K. Chem. Eur. J. 2009, 15, 6143.
[56] Yi, Y.; Fa, S.; Cao, W.; Zeng, L.; Wang, M.; Xu, H.; Zhang, X. Chem. Commun. 2012, 48, 7495.
[57] Xu, J.; Wu, G.; Wang, Z.; Zhang, X. Langmuir 2013, 29, 10959.
[58] Olivier, G. K.; Cho, A.; Sanii, B.; Connolly, M. D.; Tran, H.; Zuckermann, R. N. ACS Nano 2013, 7, 9276.
[59] Qi, X.-L.; Zhang, S.-C. Rev. Mod. Phys. 2011, 83, 1057.
[60] Wang, Z. F.; Liu, Z.; Liu, F. Nat. Commun. 2013, 4, 1471.
[61] Wang, Z. F.; Su, N.; Liu, F. Nano Lett. 2013, 13, 2842.
[62] Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357.
[63] Peng, Y.; Li, Y.-S.; Ban, Y.-J.; Jin, H.; Jiao, W.-M.; Liu, Z.-L.; Yang, W.-S. Science 2014, 346, 1356.
[64] Rodenas, T.; Luz, L.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres, X.; Francesc, X.; Gascon, J. Nat. Mater. 2015

Outlines

/