Preparation and Electrochromic Property of PEDOT CompoundPhotonic Crystals
Received date: 2015-07-21
Online published: 2015-09-15
Supported by
Project supported by Scientific and Technology Key Project of Beijing Educational Committee (No. KZ201410012017), the National Natural Science Foundation of China (No. 20974005) and Training Program of the Scientific Research Promotion Plan of Beijing Institute of Fashion Technology (No. 2014AL-04).
PEDOT is a kind of promising intrinsical conductive polymer because of the high chemical and electrochemical stability, low band gap, high conductivity, and excellent transparency in the doped state. It has been investigated in many diverse research fields such as basic polymer science, material science, electrochemistry, electronics and optoelectronics, photovoltaics, corrosion protection, and biosensors. However, the electrochromic devices based on PEDOT exist some drawbacks including low contrast, single color and long response time, which is harmful for practical application. Photonic crystals have drawn a lot of attention due to the possibility to control light propagation. We use silica to assemble the photonic crystals in this paper. Firstly, monodisperse silica particles were prepared by the modified Stöber method, and then the SiO2 opal film was obtained by a vertical deposition self-assembly method. Then, poly(3,4-ethylenedioxythiophene) (PEDOT) was coated outside the SiO2 opal template via electrochemical methods, and finally the core-shell structured SiO2@PEDOT photonic crystal films were obtained. The properties of SiO2@PEDOT were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), reflection spectra, cycle voltammograms, contrast and response time. The SEM and TEM results show that the SiO2 microsphere arranged in the form of hexagonal close packing, and the SiO2@PEDOT has spherical core-shell structure with a rough surface. The diameter of the SiO2 core is 330 nm, and the thickness of PEDOT shell is about 15 nm. Cycle voltammograms indicate that the electrochemical property of SiO2@PEDOT film is better than the pure PEDOT film. And the chromatic difference analysis of SiO2@PEDOT film (28.62) is better than PEDOT film (18.07), too. Through the UV reflectance spectra, contrast and response time measurements, it is found that the color of the SiO2@PEDOT film is bright and vibrant with a maximal contrast of 39.8%, which is superior to that of the pure PEDOT film (27.4%), and its response speed is also faster. The oxidation time and the reduction time of SiO2@PEDOT film is 1.3 s and 1.2 s, for PEDOT film, it is 2.0 s and 1.3 s respectively. All the results indicate that it is an effective method to improve the electrochromic properties of conducting polymers by introducing the photonic crystal structures.
Qin Mimi , Li Xin , Zheng Yiping , Zhang Yan , Li Congju . Preparation and Electrochromic Property of PEDOT CompoundPhotonic Crystals[J]. Acta Chimica Sinica, 2015 , 73(11) : 1161 -1166 . DOI: 10.6023/A15070505
[1] Jonas, F.; Heywang, G.; Gladbach, B.; Schmidtberg, W.; Heinze, J.; Dietrich, M. U. S. Patent: 5035926, 1991 [Chem. Abstr. 1990, 460637].
[2] Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 2101.
[3] Zhang, Y.-L.; Yuan, Y.; Liu, R.; Liu, X.-Y. In Proceedings of 2014 Annual Meeting of the 15th China Radiation Curing, 2014. (张煜霖, 袁妍, 刘仁, 刘晓亚, 2014第十五届中国辐射固化年会论文集, 2014.)
[4] Qian, J.; Fu, Z.-Y.; Li, X. Chem. Res. Appl. 2008, 20, 1397. (钱晶, 付中玉, 李昕, 化学研究与应用, 2008, 20, 1397.)
[5] Liu, Y.; Li, X.; Lü, J.-C. J. Appl. Polym. Sci. 2013, 130, 370.
[6] Zhang, Z.; Chen, G.-M.; Wang, H.-F.; Li, X. Chem. Asian J. 2015, 10, 149.
[7] Yang, H.-J. M.S. Thesis, Qingdao University of Science & Technology, Qingdao, 2012. (杨慧娟, 硕士论文, 青岛科技大学, 青岛, 2012.)
[8] Bai, Y. M.S. Thesis, Beijing Institute of Fashion Technology, Beijing, 2012. (白英, 硕士论文, 北京服装学院, 北京, 2012.)
[9] Liu, L.-J.; Karuturi, S. K.; Su, L. T.; Wang, Q.; Tok, A. L. Y. Electrochem. Commun. 2011, 13, 1163.
[10] Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[11] Yu, B.; Wang, S.-P.; Cong, H.-L.; Yang, S.-J.; Tang, P.-P.; Jiang, C.-S. Chem. Bull. 2012, 75, 216. (于冰, 王少鹏, 丛海林, 杨淑静, 唐培培, 姜传世, 化学通报, 2012, 75, 216.)
[12] Zhu, Y. Ph.D. Dissertation, Northeastern University, Shenyang, 2009. (朱芸, 博士论文, 东北大学, 沈阳, 2009.)
[13] Van Dyke, L. S.; Martin, C. R. Langmuir 1990, 6, 1118.
[14] Cho, S. I.; Hoi, D. H.; Kim, S. H.; Lee, S. B. Chem. Mater. 2005, 17, 4564.
[15] Zhang, Y.-Q.; Ma, R.-Y.; Wei, Q.-B.; Song, Y.-W.; Wang, Q. Acta Polymerica Sinica 2012, (6), 648. (张玉琦, 马荣延, 魏清渤, 宋延卫, 王俏, 高分子学报, 2012, (6), 648.)
[16] Fehse, K.; Walzer, K.; Leo, K.; Lövenich, W.; Elschner, A. Adv. Mater. 2007, 19, 441.
[17] Guo, Y.-F. M.S. Thesis, Tianjin University, Tianjin, 2010. (郭亚芳, 硕士论文, 天津大学, 天津, 2010.)
[18] Yan, G.-Y. Ph.D. Dissertation, Lanzhou University, Lanzhou, 2006. (闫刚印, 博士论文, 兰州大学, 兰州, 2006.)
[19] Liang, F.-Y.; Li, X.; Zhao, N.; Xu, J. Acta Polymerica Sinica 2014, (6), 860. (梁飞跃, 李昕, 赵宁, 徐坚, 高分子学报, 2014, (6), 860.)
[20] Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
[21] Tan, C. G.; Bowen, B. D.; Epstein, N. J. Colloid Interface Sci. 1987, 118, 1290.
[22] Sun, L.-G.; Zhao, D.-M.; Xuan, L.-C.; Zhang, Z.-Y.; Luan, Y.-J.; Li, B.-L. Journal of Natural Science of Heilongjiang University, 2012, 29, 99. (孙立国, 赵冬梅, 玄立春, 张贞浴, 栾羽佳, 李佰林, 黑龙江大学自然科学学报, 2012, 29, 99.)
/
〈 |
|
〉 |