Construction and Chromatographic Performance of a Novel Triazole Bridged Hybrid Bilayer Cyclodextrin Chiral Stationary Phase
Received date: 2015-08-03
Online published: 2015-11-19
Supported by
Project supported by the National Natural Science Foundation of China (No. 21205086), Natural Science Foundation of Tianjin, China (No. 13JCQNJC05400) and the Independent Innovation Foundation of Tianjin University (No. 2015XRX-0021).
A novel tandem-inverted triazole-bridged duplex “native-acetylated” hybrid cyclodextrin (CD) stationary phase material (ANCDCSP) was constructed via a surface-up ‘click’ approach. Mono-6-azido-CD was first immobilized onto the pre-dried silica surfaces as the down layer via ether linkage on C2 position, followed by acetylation of the cyclodextrin –OH groups with acetic anhydride. The top layer was fabricated by anchoring the synthesized alkyne functionalized CD onto the down CD layer via organic soluble Cu(I) catalytic 1,3-dipolar cycloaddition reaction (click chemistry) reported by us previously. The obtained crude material was purified by washing with N,N-dimethylformamide (DMF) twice followed by Soxlet extraction with acetone to afford the novel triazole-bridged duplex hybrid CD CSP and its structure was characterized via Fourier Transfer Infrared Spectroscopy (FTIR), thermogravimetric analysis (TG) and elemental analysis (EA). The hybrid bilayer ANCDCSP can provide multiple interaction sites such as H-bonding (OH, C=O, NH), steric effects, dipole-dipole and synergistic effect inclusion complexation, which helps to broaden the CSP’s enantioselectivity profile and enhance the enantioselectivity to some specific analytes. The CSP was applied for HPLC enantioseparation of various chiral compounds such as dansyl amino acids, carboxylic aryl acids, isoxazolines and some other racemates under reversed-phase separation mode using methanol/water and methanol/buffer as the mobile phases. Most of the dansyl amino acids and carboxylic aryl acids as well as bendroflumethiazide can be baseline separated. The isoxazolines, phenyl oxirane, atropine, DL-norleucine methyl ester and benfluorex were partially separated. The resolutions of Dns-Phe, DL-3PhLacA and Bendroflumethiazide reached 5.3, 4.1 and 4.1, respectively. The separation ability of the current CSP is superior to that of the duplex native cyclodextrins chiral stationary phase (DCDCSP) prepared by our group previously, especially in separation of dansyl amino acids, isoxazolines and bendroflumethiazide. Besides, the current CD CSP affords relatively good stability, which was verified by the satisfied reproducibility after 150 runs with or without buffer (pH 4.10).
Zhang Lifang , Zhao Jie , Wang Yong . Construction and Chromatographic Performance of a Novel Triazole Bridged Hybrid Bilayer Cyclodextrin Chiral Stationary Phase[J]. Acta Chimica Sinica, 2015 , 73(11) : 1182 -1188 . DOI: 10.6023/A15080530
[1] Zhao, L.-Z.; Zhong, G.-P.; Huang, M. Chin. J. Pharm. Anal. 2005, 25, 1203. (赵立子, 钟国平, 黄民, 药物分析杂志, 2005, 25, 1203.)
[2] Wu, X.-D.; Zhu, Y.-E. Chin. J. Pharm. Anal. 2008, 28, 715. (吴筱丹, 朱亚尔, 药物分析杂志, 2008, 28, 715.)
[3] Yang, L.-Q.; He, N.; Zhang, Y.-B. Chin. J. Med. Chem. 2000, 9, 817. (杨柳青, 何南, 张玉彬, 中国新药杂志, 2000, 9, 817.)
[4] Matthews, S. J.; McCoy, C. Clin. Thera. 2015, 25, 342.
[5] Pérez Olivero, S. J.; Pérez Trujillo, J. P. J. Agric. Food Chem. 2010, 58, 12976.
[6]
(a) Saavedra, L.; Nickerson, B.; Borjas, R. E.; Lynen, F.; Sandra, P. J. Chromatogr. B 2008, 875, 248;
(b) Zhang, J.; Du, Y.; Zhang, Q. J. Chromatogr. A 2013, 1316, 119;
(c) Yan, T. Q.; Orihuela, C. J. Chromatogr. A 2007, 1156, 220.
[7]
(a) Tong, S.; Zhang, H.; Shen, M.; Ito, Y.; Yan, J. Z. J. Chromatogr. B 2014, 962, 44.
(b) Gua, J.; Yang, J.; Bi, Y. J. Sep. Sci. 2008, 31, 288;
(c) Zhou, R.-D.; Li, L.-S.; Chen, B.-P.; Nie, G.-Z.; Zhang, H.-F. Acta Chim. Sinica 2014, 72, 720. (周仁丹, 李来生, 程彪平, 聂桂珍, 张宏福, 化学学报, 2014, 72, 720.)
[8] Armstrong, D.; Ward, T.; Armstrong, R. Science 1986, 232, 1132.
[9]
(a) Zhong, Q.; He, L.; Beesley, T. E. J. Chromatogr. A 2006, 1115, 19.
(b) Soukup, R. J.; Rozhkov, R. V.; Larock, R. C. Chromatographia 2005, 61, 219.
(c) Wang, R.-Q.; Ong, T.-T.; Tang, W. Anal. Chim. Acta 2012, 718, 121.
[10]
(a) Zhao, J.; Lu X.-H.; Wang, Y.; Lv, J. J. Chromatogr. A 2015, 1381, 253.
(b) Takashima, Y.; Yuting, Y.; Otsubo, M; Yamaguchi, H.; Harada, A. J. Org. Chem. 2012, 8, 1594.
(c) Watanabe, K.; Kitagishi, H.; Kano, K. Angew. Chem., Int. Ed. 2013, 52, 6894.
[11]
(a) Blaszkiewicz, C.; Bricout, H.; Léonard, E. Chem. Commun. 2013, 49, 6989.
(b) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[12]
(a) Wang, Y.; Young, D. J. J. Chromatogr. A 2010, 1217, 7878;
(b) Wang, H.-S.; Pen, J.-T.; Wei, J.-P.; Jiang, A. Acta Chim. Sinica. 2012, 12, 1355. (王怀松, 彭江涛, 魏纪平, 姜安, 化学学报, 2012, 70, 1355.)
[13]
(a) Guo, Z.; Jin, Y.; Liang, T. J. Chromatogr. A 2009, 1216, 257.
(b) Wang, Y.; Young, D. J.; Ng, S. C. J. Chromatogr. A 2010, 1217, 5103.
[14]
(a) Wang, Y.; Ong, T.-T.; Li, L.-S. J. Chromatogr. A 2009, 1216, 2388.
(b) Wang, Y.; Chen, H.; Xiao, Y.; Ng, C. H.; Oh, T. S.; Tan, Y. T. T.; Ng, S. C. Nat. Protocols 2011, 6, 935.
[15] Zhao, J.; Lu, X.-H.; Wang, Y. J. Chromatogr. A 2014, 1343, 101.
/
〈 |
|
〉 |