Perspective

Reductive Carboxylation of Unsaturated Hydrocarbons with Carbon Dioxide

  • Zhang Shuai ,
  • Li Xuedong ,
  • He Liang-Nian
Expand
  • State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071

Received date: 2015-09-26

  Online published: 2015-11-13

Supported by

Project supported by the National Natural Sciences Foundation of China (Nos. 21472103, 21421001), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130031110013), the MOE Innovation Team (No. IRT13022) of China.

Abstract

Transition metal-catalyzed reductive carboxylation of unsaturated hydrocarbons with CO2 is a promising and potential strategy, offering an excellent alternative access to carboxylic acids/acrylic acids. The active transition metal species could react with unsaturated hydrocarbons and CO2 to generate the stable metallalactones or carboxylic salts. The transmetalation between reductants and metallalactones/carboxylic salts regenerates the active catalytic species. As a result, the reductive carboxylation is able to run in a catalytic mode rather than stoichiometric version. Organometal species, silanes/boranes, metal powder, methanol and hydrogens have been developed as reducing reagents in reductive carboxylation with CO2. In this perspective, the latest advances on the transition metal-catalyzed reductive carboxylation are summarized, with particular focus on the application of reductants and related reaction mechanism at a molecular level.

Cite this article

Zhang Shuai , Li Xuedong , He Liang-Nian . Reductive Carboxylation of Unsaturated Hydrocarbons with Carbon Dioxide[J]. Acta Chimica Sinica, 2016 , 74(1) : 17 -23 . DOI: 10.6023/A15090631

References

[1] Yang, Z.-Z.; He, L.-N.; Gao, J. Energy Environ. Sci. 2012, 5, 6602.
[2] Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. Rev. 2011, 1, 545.
[3] Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[4] Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. 1999, 64, 3975.
[5] Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. 2001, 3, 3345.
[6] Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008.
[7] Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
[8] Shimizu, K.; Sato, Y.; Mori, M. Org. Lett. 2005, 7, 195.
[9] Li, S.; Yuan, W.; Ma, S. Angew. Chem., Int. Ed. 2011, 50, 2578.
[10] Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
[11] Yuan, R.; Lin, Z. Organometallics 2014, 33, 7147.
[12] Takimoto, M.; Hou, Z. Chem. Eur. J. 2013, 19, 11439.
[13] Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.
[14] Takaya, S. J.; Iwasawa, N. Org. Lett. 2011, 13, 1698.
[15] Suh, H.-W.; Guard, L. M.; Hazari, N. Chem. Sci. 2014, 5, 3859.
[16] Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900.
[17] Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2011, 50, 523.
[18] Ohmiya, H.; Tanabe, M.; Sawamura, M. Org. Lett. 2011, 13, 1086.
[19] Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int. Ed. 2012, 51, 11487.
[20] Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc. 2012, 134, 14314.
[21] Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.
[22] Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106.
[23] Hung, T.-V.; Olafs, D. ACS Catal. 2013, 3, 2417.
[24] Leon, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221.
[25] Correa, A.; Leon, T.; Martin, R. J. Am. Chem. Soc. 2014, 136, 1062.
[26] Liu, Y.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 11212.
[27] Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 17702.
[28] Sayyed, F. B.; Tsuji, Y.; Sakaki, S. Chem. Commun. 2013, 49, 10715.
[29] Sayyed, F. B.; Sakaki, S. Chem. Commun. 2014, 50, 13026.
[30] Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc. 2015, 137, 6476.
[31] Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani, Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960.
[32] Ostapowicz, T. G.; Schmitz, M.; Krystof, M.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2013, 52, 12119.
[33] Wu, L.; Liu, Q.; Fleischer, I.; Wu, L.; Liu, Q.; Fleischer, I.; Jackstell, R.; Beller, M. Nat. Commun. 2014, 4, 4091.
[34] Wang, W.; Yan, Z. J.; Yuan, Y.; Sun, F. X.; Zhao, M.; Ren, H.; Zhu, G. S. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[35] Gao, M. Y.; Jiang, D.; Sun, D. K.; Hou, B.; Li, D. B. Acta Chim. Sinica 2014, 72, 1092. (高梦语, 姜东, 孙德魁, 侯博, 李德宝, 化学学报, 2014, 72, 1092.)
[36] Li, F.; Suo, Q.; Hong, H.; Zhu, N.; Wang, Y.; Han, L. Chin. J. Org. Chem. 2014, 34, 2172. (李发旺, 索全伶, 洪海龙, 竺宁, 王亚琦, 韩利民, 有机化学, 2014, 34, 2172.)
[37] Zheng, G. D.; Yan, Y.; Cao, X. Z.; Xu, J. Q.; Gao, S.; Tong, S. L.; Gao, D. Acta Chim. Sinica 1995, 53, 299. (郑国栋, 阎雁, 曹锡章, 徐吉庆, 高赛, 佟珊玲, 高德, 化学学报, 1995, 53, 299.)
[38] He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2013, 52, 9620.
[39] Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
[40] Sakakura, T.; Choi, J.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[41] He, L.-N. Carbon Dioxide Chemistry, Science Publisher, Beijing, 2013. (二氧化碳化学, 科学出版社, 北京, 2013.)
[42] He, L.-N.; Wang, J.-Q.; Wang, J.-L. Pure Appl. Chem. 2009, 81, 2069.
[43] Liu, A.-H.; Ma, R.; Song, C.; Yu, A.; He, L.-N. Angew. Chem., Int. Ed. 2012, 52, 11306.

Outlines

/