Article

Electronic Transport Properties of Asymmetric Metal String Complex [Cu2Pt(npa)4X2](X=Cl-, NCS-)

  • Zhou Wohua ,
  • Chen Rong ,
  • Wu Ziwen ,
  • Ding Dandan ,
  • Xu Zhiguang ,
  • Xu Xuan ,
  • Luo Yifan
Expand
  • a School of Chemistry & Environment, South China Normal University, Guangzhou 510006;
    b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006;
    c Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006;
    d Engineering Research Center of Materials and Technology for Electrochemical Energy Storage, Ministry of Education of China, South China Normal University, Guangzhou 510006

Received date: 2015-06-24

  Online published: 2015-11-19

Supported by

Project supported by the Natural Science Foundation of Guangdong Province (No. S2012010008763), Ministry of Education and Guangdong Province (No. 2010B090400184), Science and Technology Program of Guangzhou City (No. 2011J4300063).

Abstract

The asymmetric heterometal string complexes [Cu2Pt(npa)4X2] (X=Cl-(1), NCS-(2), npa=2-naphthyridyl- phenylamine) are suitable candidates for promising inorganic molecule rectifiers. The electronic structures and transmission properties of them were investigated by theoretical calculation using Density Function Theory BP86 and Non Equilibrium Green's Functions method. The results revealed that: (1) Since the interaction between axial ligand NCS- and Cu atom is stronger than that of Cl-Cu, the Cu-Cu bond of complex 1 is stronger than that in 2, while its Cu-Pt bond is weaker than that in 2. Therefore, complex 1 has smaller energy gap ΔE between π*Pt dxz/yz and π*Cu-Cu orbital compared with that of 2. (2) The transmission channels of 1 and 2 both are β spin π* orbitals, which are mainly combination of π*Cu-Cu and π*Pt dxz/yz orbital. The smaller ΔE, the larger delocalization of π* channel, and hence the stronger transmission capacity. When the positive bias is less than 0.15 V and under negative bias, current of 1 is greater than that of 2 for the smaller ΔE of 1. However when the positive bias is larger than 0.15 V, current of 2 is significantly higher than that of 1 for the stronger delocalization of π* channel in 2. (3) The complex 2 has better rectifying effect. With a larger ΔE, the transmission of Pt → Cu direction is easier and the rectifying effect is stronger. Current of 2 under the positive bias is significantly greater than that in negative bias. When the bias is larger than 0.15 V, the rectified ratio of 2 is 10~40 times larger than 1. (4) With the ΔEβ smaller than ΔEα, the transmission capacity of α spin channel is less than β, and the effect of the spin filter will be stronger for the larger difference between ΔEβ and ΔEα. Both 1 and 2 have significant spin filter effect (up to 80%~99%).

Cite this article

Zhou Wohua , Chen Rong , Wu Ziwen , Ding Dandan , Xu Zhiguang , Xu Xuan , Luo Yifan . Electronic Transport Properties of Asymmetric Metal String Complex [Cu2Pt(npa)4X2](X=Cl-, NCS-)[J]. Acta Chimica Sinica, 2015 , 73(11) : 1214 -1218 . DOI: 10.6023/A15060430

References

[1] Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277.
[2] Lin, S. Y.; Chen, I. W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T. W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004, 108, 959.
[3] Braunstein, P.; Frison, C.; Oberbeckmann-Winter, N.; Morise, X.; Messaoudi, A.; Benard, M.; Rohmer, M.-M.; Welter, R. Angew. Chem., Int. Ed. 2004, 43, 6120.
[4] Goto, E.; Begum, R. A.; Zhan, S.; Tanase, T.; Tanigaki, K.; Sakai, K. Angew. Chem., Int. Ed. 2004, 43, 5029.
[5] Berry, J. F.; Cotton, F. A.; Murillo, C. A. Organometallics 2004, 23, 2503.
[6] Berry, J. F. Metal-Metal Bonding, Ed.: Gerard, P., Springer, Germany, 2010, pp. 1~28.
[7] Berry, J. F. Multiple Bonds Between Metal Atoms, Eds.: Cotton, F. A.; Murillo, C. A.; Walton, R. A., Springer, New York, 2005, pp. 669~706.
[8] Yeh, C. Y.; Wang, C. C.; Chen, Y. H.; Peng, S. M. Redox Systems under Nano-space Control, Ed.: Hirao, T., Springer, Germany, 2006, pp. 85~117.
[9] Liu, I. P.; Chen, C. H.; Chen, C. F.; Lee, G. H.; Peng, S. M. Chem. Commun. 2009, 5, 577.
[10] Huang, X.; Tan, Y.; Xu, X.; Xu, Z. Acta Chim. Sinica 2012, 70, 1979. (黄晓, 谭莹, 许旋, 徐志广, 化学学报, 2012, 70, 1979. )
[11] Tsai, T. W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Phys. Chem. C 2010, 114, 3641.
[12] Chen, I. W.; Fu, M. D.; Tseng, W. H.; Yu, J. Y.; Wu, S. H.; Ku, C. J.; Chen, C. H.; Peng, S. M. Angew. Chem., Int. Ed. 2006, 45, 5814.
[13] Georgiev, V. P.; McGrady, J. E. Inorg. Chem. 2010, 49, 5591.
[14] Georgiev, V. P.; McGrady, J. E. J. Am. Chem. Soc. 2011, 133, 12590.
[15] Georgiev, V. P.; Mohan, P. J.; DeBrincat, D.; McGrady, J. E. Coord. Chem. Rev. 2013, 257, 290.
[16] Georgiev, V. P.; Sameera, W. M. C.; McGrady, J. E. J. Phys. Chem. C 2012, 116, 20163.
[17] Weng, T. T.; DeBrincat, D.; Arcisauskaite, V.; McGrady, J. E. Inorg. Chem. Front. 2014, 1, 468.
[18] te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J. Comp. Chem. 2001, 22, 931.
[19] Fonseca Guerra, C.; Snijders, J. G.; te Velde G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
[20] ADF2012, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www. scm. com.
[21] Datta, S. Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, England, 1995, pp. 293~339.
[22] OpenMX webpage, http://www. openmx-square. org/.
[23] Ozaki, T. Phys. Rev. B 2003, 67, 155108.
[24] Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Roberts, B. K.; Wang, X. J. Am. Chem. Soc. 2004, 126, 7082.
[25] Kondo, H.; Kino, H.; Nara, J.; Ozaki, T.; Ohno, T. Phys. Rev. B 2006, 73, 235323.
[26] Kondo, H.; Kino, H.; Nara, J.; Ohno, T. Appl. Surf. Sci. 2008, 254, 7985.
[27] Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.
[28] Makinistian, L.; Albanesi, E. A. Appl. Phys. A 2013, 111, 923.

Outlines

/