Complexation of Triptycene-Derived Macrotricyclic Host with π-Extended Viologens
Received date: 2015-07-03
Online published: 2015-11-19
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21332008, 91127009, and 51373180), and the National Basic Research Program (No. 2011CB932501).
Development of novel macrocyclic hosts with the capability of binding selected substrates in specific complexation modes is always a very important and attractive topic in host-guest chemistry. Recently, we reported a novel macrotricyclic polyether containing two triptycene skeletons with rigid structure and two dibenzo-30-crown-10 moieties, which could show wide complexation abilities toward different kinds of guests. It was found that depending on the guests with different terminal functional groups and structures, the macrotricyclic polyether could form 1:1 or 1:2 complexes with the guests in different complexation modes in solution and also in the solid state. Moreover, the conformation of the macrocycle could easily be adjusted by the different encapsulated guests, which was to some extent similar to substrate induced fit of enzymes. It was also known that viologens with reversible single electron-accepting ability were usually used for the basic study of electrochemical and photoelectrochemical processes. They have also been widely utilized as electron deficient guests for host-guest chemistry. Compared with the viologens, π-extended viologens with conjugated structures have much more rich redox behaviors, and they could be used for photolithography, a source of electric oscillations, molecular electronic devices, and also as agents for charge transport across vesicles. However, the applications of π-extended viologens as guests in host-guest chemistry are still very limited. In this paper, complexation between the triptycene-derived macrotricyclic host and π-extended viologens in both solution and solid state was investigated in detail. It was found that depending on the guests with different linker-species and terminal functional groups, the macrotricyclic host could form 1:1 or 1:2 complexes with the guests in solution. Besides the 1:1 or 1:2 complexes, the macrotricyclic host could also form supramolecular poly[3]pseudorotaxane-type complexes with the guests in different complexation modes in the solid state. Formation of the complexes was proved by the 1H NMR, ESI-MS spectra, and X-ray crystal structures.
Key words: triptycene; macrotricyclic host; complexation; π-extended viologen
Han Ying , Meng Zheng , Chen Chuanfeng . Complexation of Triptycene-Derived Macrotricyclic Host with π-Extended Viologens[J]. Acta Chimica Sinica, 2015 , 73(11) : 1147 -1152 . DOI: 10.6023/A15070447
[1]
(a) Lehn, J.-M. Supramolecular Chemistry, VCH Publishers, New York, 1995.
(b) Macrocyclic Chemistry: Current Trends and Future Perspectives, Ed.: Gloe, K., Springer, The Netherlands, 2005.
(c) Chen, C.-F.; Ma, Y.-X. Iptycene Chemistry: From Synthesis to Applications, Springer-Verlag, Berlin Heidelberg, 2013.
(d) Zhang, Z. B.; Luo, Y.; Chen, J. Z.; Dong, S. Y.; Yu, Y. H.; Ma, Z.; Huang, F. H. Angew. Chem., Int. Ed. 2011, 50, 1397.
(e) Shi, Z. M.; Song, Y.; Lu, F.; Zhou, T. Y.; Zhao, X.; Zhang, W. K.; Li, Z. T. Acta Chim. Sinica 2013, 71, 51. (施朱明, 宋宇, 陆方, 周天佑, 赵新, 张文科, 黎占亭, 化学学报, 2013, 71, 51.)
(f) Han, C.; Xu, Z.; Diao, C. H.; Chen, X.; Liu, J.; Guo, M. J.; Fan, Z. Acta Chim. Sinica 2013, 71, 439. (韩聪, 徐喆, 刁春华, 陈鑫, 刘靖, 郭敏杰, 樊志, 化学学报, 2013, 71, 439.)
(g) Zhou, L.; Xu, L. J.; Gong, H. Y. Acta Chim. Sinica 2014, 72, 447. (周丽, 徐立进, 龚汉元, 化学学报, 2014, 72, 447.)
(h) Yi, J. M.; Xiao, X.; Zhang, Y. Q.; Xue, S. F.; Tao, Z.; Zhang, J. X. Acta Chim. Sinica 2014, 72, 949. (易君明, 肖欣, 张云黔, 薛赛凤, 陶朱, 张建新, 化学学报, 2014, 72, 949.)
(i) Yue, S. Y.; Zhou, Y. J.; Yao, Y.; Xue, M. Acta Chim. Sinica 2014, 72, 1053. (岳诗雨, 周玉娟, 姚勇, 薛敏, 化学学报, 2014, 72, 1053.)
(j) Wang, Z.; Zhou, H. J.; Hu, J. Y.; You, J. S.; Gao, G. Acta Chim. Sinica 2013, 71, 1257. (王志, 周红军, 胡俊毅, 游劲松, 高戈, 化学学报, 2013, 71, 1257.)
[2]
(a) Zeng, F.; Han, Y.; Yan, Z.-C.; Liu, C.-Y.; Chen, C.-F. Polymer 2013, 54, 6929.
(b) Zeng, F.; Shen, Y.; Chen, C.-F. Soft Matter 2013, 9, 4875.
(c) Han, Y.; Gu, Y.-K.; Xiang, J.-F.; Chen, C.-F. Chem. Commun. 2012, 48, 11076.
[3]
(a) Sauvage, J. P.; Dietrich-Buchecker, C. Molecular Catenanes, Rotaxanes and Knots, VCH Publishers, Weinheim, 1999.
(b) Badji?, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723.
(c) Chong, J. H.; MacLachlan, M. J. Chem. Soc. Rev. 2009, 38, 3301.
(d) Chen, C.-F. Chem. Commun. 2011, 47, 1674.
(e) Yang, J. S.; Yan, J. L. Chem. Commun. 2008, 1501.
(f) Han, Y.; Meng, Z.; Ma, Y.-X.; Chen, C.-F. Acc. Chem. Res. 2014, 47, 2026.
[4]
(a) Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M. Acc. Chem. Res. 2001, 34, 445.
(b) Meng, Z.; Xiang, J.-F.; Chen, C.-F. Chem. Sci. 2014, 5, 1520.
[5]
(a) Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905.
(b) Suzaki, Y. J.; Shimada, K.; Chihara, E.; Saito, T.; Tsuchido, Y.; Osakada, K. Org. Lett. 2011, 13, 3774.
[6]
(a) Isaacs, L. Chem. Commun. 2009, 619.
(b) Loeb, S. J. Chem. Soc. Rev. 2007, 36, 226.
[7]
(a) Zong, Q.-S.; Chen, C.-F. Org. Lett. 2006, 8, 211.
(b) Zhao, J.-M.; Zong, Q.-S.; Chen, C.-F. J. Org. Chem. 2010, 75, 5092.
(c) Han, Y.; Lu, H.-Y.; Zong, Q.-S.; Guo, J.-B.; Chen, C.-F. J. Org. Chem. 2012, 77, 2422.
(d) Han, T.; Chen, C.-F. J. Org. Chem. 2007, 72, 7287.
(e) Han, T.; Chen, C.-F. Org. Lett. 2006, 8, 1069.
(f) Peng, X.-X.; Lu, H.-Y.; Han, T.; Chen, C.-F. Org. Lett. 2007, 9, 895.
(g) Jiang, Y.; Cao, Y.; Zhao, J.-M.; Xiang, J.-F.; Chen, C.-F. J. Org. Chem. 2010, 75, 1767.
(h) Guan, Y. F.; Ni, M. F.; Hu, X. Y.; Xiao, T. X.; Xiong, S. H.; Lin, C.; Wang, L. Y. Chem. Commun. 2012, 48, 8529.
(i) Li, S. L.; Xiao, T. X.; Hu, B. J.; Zhang, Y. J.; Zhao, F.; Ji, Y.; Yu, Y. H.; Lin, C.; Wang, L. Y. Chem. Commun. 2011, 47, 10755.
(j) Zhang, Z. J.; Zhang, H. Y.; Chen, L.; Liu, Y. J. Org. Chem. 2011, 76, 8270.
(k) Han, Y.; Guo, J.-B.; Cao, J.; Chen, C.-F. Chin. J. Chem. 2013, 31, 607.
(l) Wang, F.; Han, C.; He, C.; Zhou, Q.; Zhang, J.; Wang, C.; Li, N.; Huang, F. J. Am. Chem. Soc. 2008, 130, 11254.
(m) Zheng, B.; Wang, F.; Zhang, J.; Ding, X.; Dong, S.; Liu, M.; Zheng, B.; Li, S.; Zhu, K.; Wu, L.; Yu, Y.; Gibson, H. W.; Huang, F. Angew. Chem., Int. Ed. 2010, 49, 1090.
[8]
(a) Porter III, W. W.; Vaid, T. P.; Rheingold, A. L. J. Am. Chem. Soc. 2005, 127, 16559.
(b) Hromadová, M.; Kolivoška, V.; Sokolová, R.; Gál, M.; Pospíšil, L.; Valášek, M. Langmuir 2010, 26, 17232.
(c) Nakagawa, M.; Oh, S. K.; Ichimura, K. Adv. Mater. 2000, 12, 403.
[9]
(a) Su, Y.-S.; Chen, C.-F. Org. Lett. 2010, 12, 1888.
(b) Stancl, M.; Hodan, M.; Sindelar, V. Org. Lett. 2009, 11, 4184.
(c) Yan, X. Z.; Zhang, M. M.; Wei, P. F.; Zheng, B.; Chi, X. D.; Ji, X. F.; Huang, F. H. Chem. Commun. 2011, 47, 9840.
(d) Choi, S. W.; Ritter, H. Macromol. Rapid Commun. 2007, 28, 101.
(e) Chi, X. D.; Xue, M. RSC Adv. 2014, 4, 365.
[10]
(a) Han, Y.; Cao, J.; Li, P.-F.; Zong, Q.-S.; Zhao, J.-M.; Guo, J.-B.; Xiang, J.-F.; Chen, C.-F. J. Org. Chem. 2013, 78, 3235.
(b) Guo, J.-B.; Han, Y.; Cao, J.; Chen, C.-F. Org. Lett. 2011, 13, 5688.
(c) Han, Y.; Jiang, Y.; Chen, C.-F. Chin. Chem. Lett. 2013, 24, 475.
[11] Han, Y.; Gu, Y.-K.; Guo, J.-B.; Chen, C.-F. Eur. J. Org. Chem. 2015, 1257.
[12]
(a) Connors, K. A. Binding Constants, John Wiley and Sons, New York, 1987.
(b) Huang, F.; Jones, J. W.; Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 14458.
[13] See the Supporting Information.
[14] Zhao, J.-M.; Zong, Q.-S.; Chen, C.-F. J. Org. Chem. 2010, 75, 5092.
[15] Schmauch, G.; Knoch, F.; Kisch, H. Chem. Ber. 1994, 127, 287.
[16] Yan, X. Z.; Wei, P. F.; Zhang, M. M.; Chi, X. D.; Liu, J. Y.; Huang, F. H. Org. Lett. 2011, 13, 6370.
[17] Nanasawa, M.; Miwa, M.; Hirai, M.; Kuwabara, T. J. Org. Chem. 2000, 65, 593.
[18] Barnes, J. C.; Juricek, M.; Strutt, N. L.; Frasconi, M.; Sampath, S.; Giesener, M. A.; McGrier, P. L.; Bruns, C. J.; Stern, C. L.; Sarjeant, A. A.; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 183.
/
〈 |
|
〉 |