Article

Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator

  • Huang Qingming ,
  • Yu Han ,
  • Zhang Xinqi ,
  • Cao Wenbing ,
  • Yu Jianchang
Expand
  • a College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108;
    b Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002

Received date: 2015-04-14

  Online published: 2015-11-24

Supported by

Project supported by the Natural Science Fund of Fujian Province (No. 2013J05027).

Abstract

In this paper we report the infrared to visible upconversion(UC) luminescence properties of Hf4+ and Zr4+ codoped NaYF4:Yb3+/Tm3+. Samples were synthesised by hydrothermal method. Concentration of Tm3+ and Yb3+ ions were fixed to be 2 mol% and 5 mol% for all samples, respectively. NaY0.93-xYb0.05Tm0.02F4 was tridoped with 0, 2, 4, 6, 8 mol% Hf4+ or Zr4+ and corresponding samples were named as Hf0, Hf2, Hf4, Hf6, Hf8 and Zr0, Zr2, Zr4, Zr6, Zr8, respectively. In a typical procedure, trivalent nitrate stock solutions of 0.2 mol/L were prepared at first by dissolving the corresponding metal oxide in concentrated nitric acid or hydrofluoric acid at elevated temperatures. And then, a certain mole percentage of trivalent nitrate solutions were added into 20 mL 0.04 mmol EDTA aqueous solution. After vigorous stirring for 30 min, 25 mL ethanol solution containing 0.2 mmol NaF, 0.2 mmol NH4HF2 and corresponding stoichiometric amount Hf4+ or Zr4+ were dropwise added into the solution, and then pH value of solution was adjusted to 3.0 by addition 1 mol/L HF, and stirring continued for 30 min. Then the emulsion mixture was moved to PTFE-lined high pressure pot and incubated in oven at 180℃ for 12 h. The final products were collected, washed several times with water and ethanol alternately, and gathered by centrifugation, and then dried in oven at 60℃. Crystal microstructure, morphology and UC luminescence properties of samples were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and upconversion photoluminescence spectra. Results revealed the bond distance of F1-Y and F2-Y become close with the rising of Hf4+ or Zr4+ codoped concentration, indicating crystal field asymmetry of rare earth ions were tuned effectively by Hf4+ or Zr4+ codoping. Electron hypersensitive transition was promoted, and the intensity of 802 nm emission was enhanced obviously. Hf4+ ion was a better dopant than Zr4+, for the extranuclear electronic structure of Hf4+ was the same with rare earth ions, and Hf4+ ion was involved in UC process as a migrator to improve Tm3+ upper state levels'population. UC luminescence of Hf4+ codoped sample were enhanced obviously, especially the shortwave emissions. The reported work establishes the understanding of Hf4+ as a migrator for Tm3+ ions upconversion luminescence, which may be helpful for design and synthesis of high-performance upconversion materials.

Cite this article

Huang Qingming , Yu Han , Zhang Xinqi , Cao Wenbing , Yu Jianchang . Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator[J]. Acta Chimica Sinica, 2016 , 74(2) : 191 -198 . DOI: 10.6023/A15040257

References

[1] Cates, E. L.; Chinnapongse, S. L.; Kim, J. H. Environ. Sci. Technol. 2012, 46(22), 12316.
[2] Li, C. X.; Lin, J. J. Mater. Chem. 2010, 20(33), 6831.
[3] Feng, W.; Han, C.; Li, F. Adv. Mater. 2013, 25(37), 5287.
[4] Buenzli, J.-C. G.; Eliseeva, S. V. J. Rare Earths 2010, 28(6), 824.
[5] Zhou, L.; Li, Z.; Liu, Z.; Yin, M.; Ren, J.; Qu, X. Nanoscale 2014, 6(3), 1445.
[6] Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30(6), 1551.
[7] Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Analyst 2010, 135(8), 1839.
[8] Chen, Z.; Wu, X.; Hu, S.; Hu, P.; Yan, H.; Tang, Z.; Liu, Y. J. Mater. Chem. C 2015, 3(1), 153.
[9] Min, Y.; Li, J.; Liu, F.; Padmanabhan, P.; Yeow, E. K. L.; Xing, B. Nanomaterials 2014, 4(1), 129.
[10] Ni, D.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Xing, H.; Xiao, Q.; Liu, Y.; Hua, Y.; Zhou, L.; Peng, W.; Zhao, K.; Shi, J. Adv. Funct. Mater. 2014, 24(42), 6613.
[11] Yang, D.; Kang, X.; Ma, P. a.; Dai, Y.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Biomaterials 2013, 34(5), 1601.
[12] Tian, G.; Gu, Z. J.; Liu, X. X.; Zhou, L. J.; Yin, W. Y.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. J. Phys. Chem. C 2011, 115(48), 23790.
[13] Park, Y.; Kim, H. M.; Kim, J. H.; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W. K.; Choi, S. H.; Park, H. S.; Yoon, S. Y.; Suh, Y. D.; Lee, S. H.; Hyeon, T. Adv. Mater. 2012, 24(42), 5755.
[14] Vetrone, F.; Naccache, R.; Zamarron, A.; de la Fuente, A. J.; Sanz-Rodriguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Sole, J. G.; Capobianco, J. A. ACS Nano 2010, 4(6), 3254.
[15] Shaoshuai, Z.; Kaimo, D.; Xiantao, W.; Guicheng, J.; Changkui, D.; Yonghu, C.; Min, Y. Opt. Commun. 2013, 291, 138.
[16] Wang, W.; Ding, M.; Lu, C.; Ni, Y.; Xu, Z. Appl. Catal. B-Environ. 2014, 144, 379.
[17] Fix, T.; Ferblantier, G.; Rinnert, H.; Slaoui, A. Sol. Energy Mater. Sol. Cells 2015, 132, 191.
[18] Huang, X.; Han, S.; Huang, W.; Liu, X. Chem. Soc. Rev. 2013, 42(1), 173.
[19] Khan, A. F.; Yadav, R.; Mukhopadhya, P. K.; Singh, S.; Dwivedi, C.; Dutta, V.; Chawla, S. J. Nanopart. Res. 2011, 13(12), 6837.
[20] Gao, D.; Zhang, X.; Zheng, H.; Shi, P.; Li, L.; Ling, Y. Dalton Trans. 2013, 42(5), 1834.
[21] Zhang, H. B.; Bu, Y. Y.; Yang, X. L.; Xiao, S. G.; Ding, J. W. Mater. Sci. Eng. B-Adv. 2011, 176(3), 256.
[22] Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10(12), 968.
[23] Zhao, J. Z.; Ji, S. M.; Guo, H. M. RSC Adv. 2011, 1(6), 937.
[24] Huang, Q.; Yu, H.; Zhang, X.; Yu, J. Acta Chim. Sinica 2013, 71(7), 1071. (黄清明, 俞瀚, 张新奇, 俞建长, 化学学报, 2013, 71(7), 1071.)
[25] Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10(12), 968.
[26] Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. Adv. Funct. Mater. 2009, 19(18), 2924.
[27] Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. J. Am. Chem. Soc. 2012, 134(51), 20849.
[28] Luo, Q.; Chen, Y.; Li, Z.; Zhu, F.; Chen, X.; Sun, Z.; Wei, Y.; Guo, H.; Wang, Z. B.; Huang, S. Nanotechnology 2014, 25(18), 185401.
[29] Cheng, Q.; Sui, J. H.; Cai, W. Nanoscale 2012, 4(3), 779.
[30] Yu, H.; Huang, Q.; Cao, W.; Zhang, X.; Yu, J. Acta Chim. Sinica 2013, 71(12), 1639. (俞瀚, 黄清明, 曹文兵, 张新奇, 俞建长, 化学学报, 2013, 71(12), 1639.)
[31] Chen, D. Q.; Yu, Y. L.; Huang, F.; Huang, P.; Yang, A. P.; Wang, Y. S. J. Am. Chem. Soc. 2010, 132(29), 9976.
[32] Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. Adv. Mater. 2012, 24(9), 1226.
[33] Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Nature 2010, 463(7284), 1061.
[34] Richardson, F. S. Inorg. Chem. 1980, 19(9), 2806.
[35] Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54(6), 2643.
[36] Judd, B. R. Phys. Rev. 1962, 127, 750.
[37] Ofelt, G. S. J. Chem. Phys. 1962, 37, 511.
[38] Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114(10), 4719.

Outlines

/