Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell
Received date: 2015-09-15
Online published: 2015-11-24
Supported by
Project supported by the National Natural Science Foundation of China (No. 21373132) and the Doctor Research start foundation of Shaanxi University of Technology (Nos. SLGKYQD2-13, SLGKYQD2-10, SLGQD14-10).
Designing and synthesizing novel polymer electron-donor materials of polymer-based solar cells (PSCs) with the high photovoltaic performance is an important and hot research field of organic electronics. In the current work, taking the 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (DBDT) as the electron-rich unit and the 3,6-di(thiophen-2-yl)pyrrolo[3, 4-c]pyrrole-1,4(2H,5H)-dione (DPP) as the electron-deficient one, a new donor material (PDBDTDPP) of PSCs has been designed. Then, with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an electron acceptor, the geometries, electronic properties, optical absorption properties, intramolecular and intermolecular reorganization energies, exciton binding energies, charge transfer integrals, and the rates of exciton dissociation and charge recombination for PC61BM-DBDTDPPn=1,2,3,∞ systems have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the incoherent Marcus-Hush charge transfer model and some extensive multidimensional visualization techniques. In addition, the linear regression analysis has been done to explore the relationship between the above properties and the repeating unit. Calculated results show that the designed donor polymer possesses a good planar geometry, the low-lying the highest occupied molecular orbital (HOMO) level, strong and wide optical absorption in ultraviolet-visible band, large exciton binding energy (1.365 eV), and the relatively small intramolecular reorganization energies companying with the exciton dissociation (0.152 eV) and charge recombination (0.314 eV) processes. Furthermore, our theoretical study also reveals that in the donor-acceptor surface, the exciton dissociation rate is as high as 1.073×1014 s-1, while the charge recombination rate is only 1.797×108 s-1. The former is as six orders of magnitude large as the latter, which denotes that there is quite high exciton dissociation efficiency in the studied donor-acceptor surface. In brief, our theoretical results clearly indicate that PDBDTDPP should be a very promising electron-donating material, and is worth of making further device research by experiments. In addition, this study also shows that theoretical investigations not only can promote a deeper understanding for the connection between the chemical structures and the optical/electronic properties of organic compounds, but also can provide some valuable references for the rational design of novel donor-acceptor systems.
Zhao Caibin , Wang Zhanling , Zhou Ke , Ge Hongguang , Zhang Qiang , Jin Lingxia , Wang Wenliang , Yin Shiwei . Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell[J]. Acta Chimica Sinica, 2016 , 74(3) : 251 -258 . DOI: 10.6023/A15090606
[1] Zhang, Q.-H. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2006 (in Chinese). (张庆辉, 博士论文, 浙江大学, 杭州, 2006.)
[2] Zhang, H.-L. Ph.D. Dissertation, Jilin University, Changchun, 2014 (in Chinese). (张海龙, 博士论文, 吉林大学, 长春, 2014.)
[3] Liu, Z.; Xu, F.; Yan, D.-D. Acta Chim. Sinica 2014, 72, 171(in Chinese). (刘震, 徐丰, 严大东, 化学学报, 2014, 72, 171.)
[4] Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924.
[5] Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Mater. 2001, 11, 15.
[6] Jorgensen, M.; Norrman, K.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92, 686.
[7] Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
[8] Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
[9] Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954.
[10] You, J. B.; Dou, L. T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
[11] Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2013, 6, 3407.
[12] You, J. B.; Chen, C.-C.; Hong, Z. R.; Yoshimura, K.; Ohya, K.; Xu, R.; Ye, S. L.; Gao, J.; Li, G.; Yang, Y. Adv. Mater. 2013, 25, 3973.
[13] Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Adv. Mater. 2009, 21, 1521.
[14] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
[15] Huo, L. J.; Hou, J. H.; Chen, H.-Y.; Zhang, S. Q.; Jiang, Y.; Chen, T. L.; Yang, Y. Macromolecules 2009, 42, 6564.
[16] Sista, P.; Nguyen, H.; Murphy, J. W.; Hao, J.; Dei, D. K.; Palaniappan, K.; Servello, J.; Kularatne, R. S.; Gnade, B. E.; Xue, B.; Dastoor, P. C. M.; Biewer, C.; Stefan, M. C. Macromolecules 2010, 43, 7875.
[17] Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586.
[18] Huo, L. J.; Zhang, S. Q.; Guo, X.; Xu, F.; Li, Y. F.; Hou, J. H. Angew. Chem., Int. Ed. 2011, 50, 9697.
[19] Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. H. Adv. Mater. 2014, 26, 1118.
[20] Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616.
[21] Bronstein, H.; Chen, Z. Y.; Ashraf, R. S.; Zhang, W. M.; Du, J. P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272.
[22] Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2013, 52, 8341.
[23] Yi, Z. R.; Sun, X. N.; Zhao, Y.; Guo, Y. L.; Chen, X. G.; Qin, J. G.; Yu, G.; Liu, Y. Q. Chem. Mater. 2012, 24, 4350.
[24] Fabiano, E.; Sala, F. D.; Cingolani, R.; Weimer, M.; Görling, A. J. Phys. Chem. A 2005, 109, 3078.
[25] Sai, F.-C.; Chang, C.-C.; Liu, C.-L.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958.
[26] Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 2339.
[27] Yanai, T. Chem. Phys. Lett. 2004, 393, 51.
[28] Jorge, R. E.; Jorge, S. S.; Suave, R. N. Chirality 2015, 27, 23.
[29] Vl?ek, A.; Záliš, S. Coord. Chem. Rev. 2007, 251, 258.
[30] Franck, R. J. J. Phys. Chem. A 2013, 117, 4267.
[31] Jacquemin, D.; Perpète, E. A.; Vydrov, O. A.; Scuseria, G. E.; Carlo, A. J. Chem. Phys. 2007, 127, 094102.
[32] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
[33] Sun, L.; Bai, F. Q.; Zhao, Z. X.; Zhang, H. X. Sol. Energy Mater. Sol. Cells 2011, 95, 1800.
[34] Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580.
[35] Lu, T.; Chen, F. W. J. Mol. Graph. Model. 2012, 38, 314.
[36] Lu, T.; Chen, F. W. Acta Chim. Sinica. 2011, 69, 2393(in Chinese). (卢天, 陈飞武, 化学学报, 2011, 69, 2393.)
[37] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2010.
[38] Gautam, P.; Maragani, R.; Misra, R. Tetrahedron. Lett. 2014, 55, 6827.
[39] Demeter, D.; Rousseau, T.; Leriche, P.; Cauchy, T.; Po, R.; Roncali, J. Adv. Funct. Mater. 2011, 21, 4379.
[40] Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J. Chem-Eur. J. 2005, 11, 3742.
[41] Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532.
[42] Xu, Z.; Chen, L.-M.; Chen, M.-H.; Li, G.; Yang, Y. Appl. Phys. Lett. 2009, 95, 013301.
[43] Zheng, L. P.; Zhou, Q. M.; Deng, X. Y.; Yuan, M.; Yu, G.; Cao, Y. J. Phys. Chem. B 2004, 108, 11921.
[44] Wang, X. M.; Guo, Y. L.; Xiao, Y.; Zhang, L.; Yu, G.; Liu, Y. Q. J. Mater. Chem. 2009, 19, 3258.
[45] Li, Y. Z.; Pullerits, T.; Zhao, M. Y.; Sun, M. T. J. Phys. Chem. C 2011, 115, 21865.
[46] Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Prog. Photovolt: Res. Appl. 2007, 15, 659.
[47] Zhen, C.-G.; Becker, U.; Kieffer, J. J. Phys. Chem. A 2009, 113, 9707.
[48] Nayak, P. K.; Periasamy, N. Org. Electron. 2009, 10, 1396.
[49] Schwenn, P. E.; Burn, P. L.; Powell, B. J. Org. Electron. 2011, 12, 394.
[50] Shen, F. G.; Peng, A. D.; Chen, Y.; Dong, Y.; Jiang, Z. W.; Wang, Y. B.; Fu, H. B.; Yao, J. N. J. Phys. Chem. A 2008, 112, 2206.
[51] Akaike, K.; Kanai, K.; Yoshida, H.; Tsutsumi, J.; Nishi, T.; Sato, N.; Ouchi, Y.; Seki, K. J. Appl. Phys. 2008, 104, 023710.
[52] Guan, Z.-L.; Kim, J. B.; Wang, H.; Jaye, C.; Fischer, D. A.; Loo, Y.-L.; Kahn, A. Org. Electron. 2010, 11, 1779.
[53] Kanai, K.; Akaike, K.; Koyasu, K.; Sakai, K.; Nishi, T.; Kamizuru, Y.; Nishi, T.; Ouchi, Y.; Seki, K. Appl. Phys. A: Mater. Sci. Process. 2009, 95, 309.
[54] Zang, D.-Y.; So, F. F.; Forrest, S. R. Appl. Phys. Lett. 1991, 59, 823.
[55] Brocks, G.; van den Brink, J.; Morpurgo, A. F. Phys. Rev. Lett. 2004, 93, 146405.
[56] Mossotti, O. F. Memorie Mat. Fis. Modena. 1985, 24, 49.
[57] Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk M. M. Adv. Funct. Mater. 2003, 13, 43.
[58] Malagoli, M.; Brédas, J. L. Chem. Phys. Lett. 2000, 327, 13.
[59] Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2004, 126, 3271.
[60] Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2005, 127, 6077.
[61] Marcus, R. A. J. Chem. Phys. 1965, 43, 679.
[62] Imahori, H.; Tkachenko, N. V.; Vehmanen, V.; Tamaki, K.; Lemmetyinen, H.; Sakata, Y.; Fukuzumi, S. J. Phys. Chem. A 2001, 105, 1750.
[63] D'Souza, F.; Chitta, R.; Ohkubo, K.; Tasior, M.; Subbaiyan, N. K.; Zandler, M. E.; Rogacki, M. K.; Gryko, D. T.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 14263.
[64] Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926.
[65] Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.
[66] Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599.
[67] Hush, N. S. J. Chem. Phys. 1958, 28, 962.
[68] Yang, Y. M.; Wang, X. H.; Yin, S. W. Sci. China-Chem. 2010, 40, 501(in Chinese). (杨永梅, 王新辉, 尹世伟, 中国科学: 化学, 2010, 40, 501.)
[69] Yang, Y.-M.; Yin, S.-W.; Li, L.-L.; Yang, J.-Y. Acta Chim. Sinica 2011, 69, 1991(in Chinese). (杨永梅, 尹世伟, 李兰兰, 杨家瑜, 化学学报, 2011, 69, 1991.)
[70] Yang, X. D.; Li, Q. K.; Shuai, Z. G. Nanotechnology 2007, 18, 424029.
[71] Yang, X. D.; Wang, L. J.; Wang, C. L.; Long, W.; Shuai, Z. G. Chem. Mater. 2008, 20, 3205.
[72] Wen, S.-H.; Deng, W.-Q.; Han, K.-L. Phys. Chem. Chem. Phys. 2010, 12, 9267.
[73] Nan, G. J.; Li, Z. S. Org. Electron. 2012, 13, 1229.
[74] Li, H. X.; Wang, X. F.; Li, Z. F. Chin. Sci. Bull. 2012, 57, 2000(in Chinese). (李会学, 王晓峰, 李志锋, 科学通报, 2012, 57, 2000.)
[75] Yin, S. W.; Li, L. L.; Yang, Y. M.; Reimers, J. R. J. Phys. Chem. C 2012, 116, 14826.
[76] Liu, T.; Cheung, D. L.; Troisi, A. Phys. Chem. Chem. Phys. 2011, 13, 21461.
/
〈 |
|
〉 |