Chemistry in Separation and Enrichment of Glycoproteins/Glycopeptides
Received date: 2015-09-05
Online published: 2015-11-25
Supported by
Project supported by the National Natural Science Fund of China (No. 21205038) and the Natural Science Foundation of Hunan Province, China (No. 13JJ2022).
Glycoproteins play very important roles in many biological processes. The separation and enrichment of glycoproteins/glycopeptides is still considered a challenging task because of the low abundance and microheterogenity. This review introduces the chemistry method of separation and enrichment of glycoproteins and glycopeptides:hydrozide chemistry, amine chemistry, boronic acid chemistry, beta-elimination and Michael addition chemistry.
Key words: glycoprotein; separation and enrichment; glycoproteomics; chemistry
Zhang Lixia , Du Xiufang , Zeng Ying . Chemistry in Separation and Enrichment of Glycoproteins/Glycopeptides[J]. Acta Chimica Sinica, 2016 , 74(2) : 149 -154 . DOI: 10.6023/A15090584
[1] Varki, A.; Sharon, N. Essential of Glycobiology, 2nd ed., Eds.:Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Cold Spring Harbor Laboratory Press, New York, 2009, p. 1.
[2] Zhang, S. Z. Glycobiology and Glycoengineering, Tsinghua University Press, Beijing, 2002, p. 97. (张树政, 糖生物学和糖生物工程, 清华大学出版社, 北京, 2002, p. 97).
[3] Kolli, V.; Schumacher, K. N.; Dodds, E. D. Bioanalysis 2015, 7, 113.
[4] Vosseller, K.; Trinidad, J. C.; Chalkley, R. J.; Specht, C. G.; Thalhammer, A.; Lynn, A. J.; Snedecor, J. O.; Guan, S.; Medzihradszky, K. F.; Maltby, D. A.; Schoepfer, R.; Burlingame, A. L. Mol. Cell. Proteomics 2006, 5, 923.
[5] Dai, Z.; Fan, J.; Liu, Y.; Zhou, J.; Bai, D.; Tan, C.; Guo, K.; Zhang, Y.; Zhao, Y.; Yang, P. Electrophoresis 2007, 28, 4382.
[6] Qiu, R.; Regnier, F. E. Anal. Chem. 2005, 77, 2802.
[7] Yang, Z.; Hancock, W. S. J. Chromatogr. A 2004, 1053, 79.
[8] Comer, F. I.; Vosseller, K.; Wells, L.; Accavitti, M. A.; Hart, G. W. Anal. Biochem. 2001, 293, 169.
[9] Ball, L. E.; Berkaw, M. N.; Buse, M. G. Mol. Cell. Proteomics 2006, 5, 313.
[10] Hagglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O. N.; Roepstorff, P. J. Proteome Res. 2004, 3, 556.
[11] Zhao, J.; Simeone, D. M.; Heidt, D.; Anderson, M. A.; Lubman, D. M. J. Proteome Res. 2006, 5, 1126.
[12] Jiang, J.; Ying, W. T.; Qian, X. H. Chin. J. Anal. Chem. 2014, 42, 159. (江静, 应万涛, 钱小红, 分析化学, 2014, 42, 159).
[13] Liu, L.; Yu, M.; Zhang, Y.; Wang, C. C.; Lu, H. ACS Appl. Mater. Interfaces 2014, 6, 7823.
[14] Zhang, H.; Li, X.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.
[15] Klement, E.; Lipinszki, Z.; Kupihar, Z.; Udvardy, A.; Medzihradszky, K. F. J. Proteome Res. 2010, 9, 2200.
[16] Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G. Nat. Methods 2009, 6, 809.
[17] Zhang, Y.; Kuang, M.; Zhang, L.; Yang, P.; Lu, H. Anal. Chem. 2013, 85, 5535.
[18] Zhang, Y.; Yu, M.; Zhang, C.; Ma, W.; Zhang, Y.; Wang, C.; Lu, H. Anal. Chem. 2014, 86, 7920.
[19] Zhang, Y.; Yu, M.; Zhang, C.; Wang, Y.; Di, Y.; Wang, C.; Lu, H. Chem. Commun. 2015, 51, 5982.
[20] Xu, Y.; Bailey, U. M.; Punyadeera, C.; Schulz, B. L. Rapid Commun. Mass Spectrom. 2014, 28, 471.
[21] Liu, L. T.; Zhang, Y.; Jiao, J.; Yang, P. Y.; Lu, H. J. Acta Chim. Sinica 2013, 71, 535. (刘丽婷, 张莹, 焦竞, 杨芃原, 陆豪杰, 化学学报, 2013, 71, 535).
[22] Liu, J.; Qu, Y.; Yang, K.; Wu, Q.; Shan, Y.; Zhang, L.; Liang, Z.; Zhang, Y. ACS Appl. Mater. Interfaces 2014, 6, 2059.
[23] Liu, J.; Yang, K.; Qu, Y.; Li, S.; Wu, Q.; Liang, Z.; Zhang, L.; Zhang, Y. Chem. Commun. 2015, 51, 3896.
[24] Zhang, J.; Ni, Y. L.; Zheng, X. L. J. Sep. Sci. 2015, 38, 81.
[25] Zhang, X.; He, X.; Chen, L.; Zhang, Y. J. Mater. Chem. 2012, 22, 16520.
[26] Zhang, X.; He, X.; Chen, L.; Zhang, Y. J. Mater. Chem. B 2014, 2, 3254.
[27] Sparbier, K.; Wenzel, T.; Kostrzewa, M. J. Chromatogr. B, Anal. Technol. Biomed. Life Sci. 2006, 840, 29.
[28] Wells, L.; Vosseller, K.; Cole, R. N.; Cronshaw, J. M.; Matunis, M. J.; Hart, G. W. Mol. Cell. Proteomics 2002, 1, 791.
[29] Zheng, Y.; Guo, Z.; Cai, Z. Talanta 2009, 78, 358.
[30] Sun, B.; Ranish, J. A.; Utleg, G. A.; White, T. J.; Yan, X.; Lin, B.; Hood, L. Mol. Cell. Proteomics 2007, 6, 141.
[31] Liu, T.; Qian, W. J.; Gritsenko, M. A.; Xiao, W.; Moldawer, L. L.; Kaushal, A.; Monroe, M. E.; Varnum, S. M.; Moore, R. J.; Purvine, O. S.; Maier, V. R.; Davis, W. R.; Tompkins, R. G.; Camp II, D. G.; Smith, R. D. Mol. Cell. Proteomics 2006, 5, 1899.
[32] Pan, S.; Wang, Y.; Quinn, J. F.; Peskind, E. R.; Waichunas, D.; Wimberger, J. T.; Jin, J.; Li, J. G.; Zhu, D.; Pan, C.; Zhang, J. J. Proteome Res. 2006, 5, 2769.
[33] Monzo, A.; Olajos, M.; Benedictis, L. D.; Rivera, Z.; Bonn, G. K.; Guttman, A. Anal. Bioanal. Chem. 2008, 392, 195.
[34] Kubota, K.; Sato, Y.; Suzuki, Y.; Goto-Inoue, N.; Toda, T.; Suzuki, M.; Hisanaga, S.; Suzuki, A.; Endo, T. Anal. Chem. 2008, 80, 3693.
/
〈 |
|
〉 |