Article

Effect of Temperature on Near-infrared Spectra of n-Alkanes

  • Qi Lihua ,
  • Cai Wensheng ,
  • Shao Xueguang
Expand
  • Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Received date: 2015-10-17

  Online published: 2015-12-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21475068) and MOE Innovation Team (IRT13022).

Abstract

Effect of temperature on near-infrared (NIR) spectra has been studied and applied to structural and quantitative analyses. To investigate the effect of temperature on NIR spectra of alkyl organic system, n-alkanes were studied in this work. NIR spectra of pure n-alkanes (hexane to decane), binary (hexane and octane) and ternary (octane, nonane and decane) mixtures were measured. In the experiments, temperature was controlled to change from 60 to 20℃ with a step of ca. 5℃. Comparing the spectra at different temperatures, only a little difference in peak intensity of some bands can be found. Therefore, alternating trilinear decomposition (ATLD) algorithm was adopted to analyze the three-order data matrix. The results show that two spectral loadings are obtained because the influence of temperature on the spectra of terminal ethyl (C2H5) groups differs from that of mid-chain methylene (CH2) groups. Furthermore, the temperature scores of CH2 and C2H5 groups decrease linearly with temperature, implying that the temperature effect can be quantitatively described by a quantitative spectra-temperature relationship (QSTR) model. The QSTR model provides an efficient way to predict the temperature of n-alkane solutions. Good linearity also exists between sample scores and carbon number or the relative content of CH2 and C2H5 groups in the molecules of the n-alkanes. Linear models between the two scores and the relative content of CH2 and C2H5 groups are obtained, respectively, using the least square fitting of the score and the relative contents. The model can be used for prediction of the relative content of CH2 and C2H5 groups in mixtures, which can further be used to estimate the composition of the mixtures. Furthermore, the relationship between the scores and the carbon atom numbers is modeled using multivariate linear regression (MLR). The composition of n-alkane mixtures can also be estimated through the predicted carbon number using the MLR model. These models are validated by binary and ternary mixtures of the n-alkanes. It was indicated that the relative contents of CH2 and C2H5 groups or the carbon atom number can be predicted using the models. Therefore, a new way for quantitative estimation of the composition in n-alkane mixtures was developed using the temperature effect of the near-infrared spectra.

Cite this article

Qi Lihua , Cai Wensheng , Shao Xueguang . Effect of Temperature on Near-infrared Spectra of n-Alkanes[J]. Acta Chimica Sinica, 2016 , 74(2) : 172 -178 . DOI: 10.6023/A15100664

References

[1] Lu, W.-Z.; Yuan, H.-F.; Xu, G.-T. Modern Near Infrared Spectroscopy Analytical Technology, 2nd ed., China Petrochemical Press, Beijing, 2010, pp. 13~32. (陆婉珍, 袁洪福, 徐广通, 现代近红外光谱分析技术(第二版), 中国石化出版社, 北京, 2010, pp. 13~32.)
[2] Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Anal. Chim. Acta 2011, 690, 64.
[3] Zhuang, X.-L.; Xiang, Y.-H.; Qiang, H.; Zhang, Z.-Y.; Zou, M.-Q.; Zhang, X.-F. Spectrosc. Spect. Anal. 2010, 30, 933(in Chinese). (庄小丽, 相玉红, 强洪, 张卓勇, 邹明强, 张孝芳, 光谱学与光谱分析, 2010, 30, 933.)
[4] Zhang, X.; Du, Y.-P.; Tong, P.-J.; Li, W.; Iqbal, J.; Wu, T.; Hu, H.-L.; Zhang, W.-B. Chemom. Intell. Lab. Syst. 2014, 134, 58.
[5] Zhang, W.-J.; Liu, R.; Xu, K.-X. Acta Chim. Sinica 2012, 70, 1281(in Chinese). (张婉洁, 刘蓉, 徐可欣, 化学学报, 2012, 70, 1281.)
[6] Shao, X.-G.; Ning, Y.; Liu, F.-X.; Li, J.-H.; Cai, W.-S. Acta Chim. Sinica 2012, 70, 2109(in Chinese). (邵学广, 宁宇, 刘凤霞, 李积慧, 蔡文生, 化学学报, 2012, 70, 2109.)
[7] Wlufer, F.; Kok, W. T.; Smilde, A. K. Anal. Chem. 1998, 70, 1761.
[8] Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51, 526.
[9] Liu, Y.-L.; Ozaki, Y. J. Phys. Chem. 1996, 100, 7326.
[10] Wuttke, R.; Hofmann, H.; Nettels, D.; Borgia, M. B.; Mittal, J.; Best, R. B.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5213.
[11] Liu, Z.-G.; Zhao, L.; Zhou, Z.; Sun, T.-Z.; Zu, Y.-G. Scanning 2012, 34, 302.
[12] Jing, Y.; Wu, P.-Y. Cellulose 2013, 20, 67.
[13] Segtnan, V. H.; Sasic, S.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.
[14] Sasic, S.; Segtnan, V. H.; Ozaki, Y. J. Phys. Chem. A 2002, 106, 760.
[15] Shao, X.-G.; Kang, J.; Cai, W.-S. Talanta 2010, 82, 1017.
[16] Kang, J.; Cai, W.-S.; Shao, X.-G. Talanta 2011, 85, 420.
[17] Shan, R.-F.; Zhao, Y.; Fan, M.-L.; Liu, X.-W.; Cai, W.-S.; Shao, X. G. Talanta 2015, 131, 170.
[18] Tosi, C.; Pinto, A. Spectrochim. Acta 1972, 28A, 585.
[19] Mullins, O. C.; Joshi, N. B.; Groenzin, H.; Daigle, T.; Crowell, C.; Joseph, M. T.; Jamaluddin, A. Appl. Spectrosc. 2000, 54, 624.
[20] Garcia, G.; Trenzado, J. L.; Alcalde, R.; Rodriguez-Delgado, A.; Atihan, M.; Aparicio, S. J. Phys. Chem. B 2014, 118, 11310.
[21] Tojo, J.; Canosa, J.; Rodriguez, A.; Ortega, J.; Dieppa, R. J. Chem. Eng. Data 2004, 49, 86.
[22] Shao, X.-G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276.
[23] Shan, R.-F.; Cai, W.-S.; Shao, X.-G. Chemom. Intell. Lab. Syst. 2014, 131, 31.
[24] Ni, Y.-N.; Wang, Y.; Kokot, S. Talanta 2009, 78, 432.
[25] Ni, Y.-N.; Song, R. M.; Kokot, S. Spectrochim. Acta, Part A 2012, 96, 252.
[26] Kwasniewicz, M.; Czarnecki, M. A. Spectrochim. Acta, Part A 2015, 143, 165.
[27] Parker, M. E.; Steele, D.; Smith, M. J. C. J. Phys. Chem. A 1997, 101, 9618.
[28] Wu, H.-L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1.
[29] Li, S.-F.; Wu, H.-L.; Yu, Y.-J.; Li, Y.-N.; Nie, J.-F.; Fu, H.-Y.; Yu, R.-Q. Talanta 2010, 81, 805.
[30] Su, Z.-Y.; Wu, H.-L.; Liu, Y.-J.; Xu, H.; Zhang, J.; Nie, C.-C.; Yu, R.-Q. Acta Chim. Sinica 2012, 70, 459(in Chinese). (苏志义, 吴海龙, 刘亚娟, 许慧, 张娟, 聂重重, 俞汝勤, 化学学报, 2012, 70, 459.)
[31] Wang, J.-Y.; Wu, H.-L.; Sun, Y.-M.; Gu, H.-W.; Liu, Z.; Liu, Y.-J.; Yu, R.-Q. J. Chromatogr. B 2014, 948-948, 32.
[32] Yin, X.-L.; Wu, H.-L.; Zhang, X.-H.; Gu, H.-W.; Yu, R.-Q. Acta Chim. Sinica 2013, 71, 560(in Chinese). (尹小丽, 吴海龙, 张晓华, 谷惠文, 俞汝勤, 化学学报, 2013, 71, 560.)
[33] Zhang, S.-R.; Wu, H.-L.; Chen, Y.; Zhang, X.-H.; Wang, J.-Y.; Li, Y.; Yu, R.-Q. Chemom. Intell. Lab. Syst. 2013, 121, 9.
[34] Tu, J.-R.; Cai, W.-S.; Shao, X.-G. Analyst 2014, 139, 1016.
[35] Tu, J.-R.; Cai, W.-S.; Shao, X.-G. J. Electroanal. Chem. 2014, 725, 25.

Outlines

/