Removal of Background Drift Nonlinear Interference in 3-D Spectral Arrays for Multi-Way Calibration Using Trilinear Decomposition Methods
Received date: 2015-11-09
Online published: 2016-01-29
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21221003, 21575039) and theHigh-level Scientific Research Foundation for the Introduction of Talent of Hunan University of Humanities, Science and Technology (No. 8250139).
Fluorescent and phosphorescent techniques have been widely used in the fields of food, biology, environment, chemistry, medicine, life science and so on. However, the spectral background drift often occurs in the spectral excitation dimension, creating the need for new methods to process this phenomenon. There are many different factors which may lead to this common phenomenon, such as the changes in background noise of instrument or temperature. In the work, a new technique for removal of background drift in three-dimensional spectral arrays is proposed. The basic idea is to perform trilinear decomposition based on the alternating trilinear decomposition (ATLD) algorithm on the instrumental response data. In model building, the background drift is modeled as an additional component or factor as well as the analytes of interest and the interferents. As the optimum number of factors (N) is provided by the core consistency diagnostic (CORCONDIA), the ATLD algorithm is applied to decompose the raw data (Xraw) with the factor number of N, then three profile matrices A, B and C can be obtained. Vectors an, bn and cn that representing the signal of the background drift can be extracted from these matrices to construct a 3-D background drift data array (Xdrift ). After subtracting the Xdrift from the Xraw, the background drift is removed, leaving the new data on a flat baseline. Two simulated data sets were firstly employed to demonstrate the reasonability of the new method. The same and different levels of background drifts along the excitation dimension are added into the two simulated data sets, respectively. Then, it is successfully used to analyze two experimental data sets in which significant background drift are present. These results highlight the fact that this technique yields a good removal of background drift. In addition, the good result is obtained by secondary removal for serious background drift. The proposed method can be viewed as a good spectral pretreatment technique.
Qing Xiangdong , Wu Hailong , Gu Huiwen , Yin Xiaoli , Wen Jin , Shen Xiangzhong , Yu Ruqin . Removal of Background Drift Nonlinear Interference in 3-D Spectral Arrays for Multi-Way Calibration Using Trilinear Decomposition Methods[J]. Acta Chimica Sinica, 2016 , 74(3) : 277 -284 . DOI: 10.6023/A15110704
[1] Wu, H. L.; Nie, J. F.; Yu, Y. J.; Yu, R. Q. Anal. Chim. Acta 2009, 650, 131.
[2] Zhang, C. Y.; Meng, Y. Z.; Kuang, J. Z.; Xu, L. Acta Chim. Sinica 2015, 73, 409. (张崇洋, 孟玉珠, 匡金志, 徐岚, 化学学报, 2015, 73, 409.)
[3] Ni, Y. N.; Zhong, X. Z. Chin. Chem. Lett. 2007, 18, 569.
[4] Liu, X. F.; Cai, X. H.; Huang, Y. Q.; Shi, L. N.; Fan, Q. L.; Huang, W. Acta Chim. Sinica 2014, 72, 440. (刘兴奋, 蔡小慧, 黄艳琴, 石琳, 范曲立, 黄维, 化学学报, 2014, 72, 440.)
[5] Li, X. L.; Wang, Y. C.; Zhang, X. J.; Zhao, Y. J.; Liu, C. H.; Li, Z. P. Acta Chim. Sinica 2014, 72, 395. (李晓利, 王愈聪, 张学晶, 赵云颉, 刘成辉, 李正平, 化学学报, 2014, 72, 395.)
[6] Wang, J. Y.; Wu, H. L.; Zhang, J.; Zhang, X. H.; Yu, R. Q. Sci. China Ser. B 2011, 41, 884. (王建瑶, 吴海龙, 张娟, 张晓华. 俞汝勤, 中国科学: 化学, 2011, 41, 884.)
[7] Li, S. F.; Wu, H. L.; Xia, A. L.; Zhu, S. H.; Nie, J. F.; Bian, Y. C.; Liu, J.; Yu, R. Q. Acta Chim. Sinica 2008, 66, 947. (李淑芳, 吴海龙, 夏阿林, 朱绍华, 聂瑾芳, 边英超, 刘佳, 俞汝勤, 化学学报, 2008, 66, 947.)
[8] Yin, X. L.; Wu, H. L.; Zhang, X. H.; Gu, H. W.; Yu, R. Q. Acta Chim. Sinica 2013, 71, 560. (尹小丽, 吴海龙, 张晓华, 谷惠文, 俞汝勤, 化学学报, 2013, 71, 560.)
[9] Harshman, R. A. UCLA Working Papers in Phonetics 1970, 16, 1.
[10] Wu, H. L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1.
[11] Chen, Z. P.; Wu, H. L.; Jiang, J. H.; Li, Y.; Yu, R. Q. Chemom. Intell. Lab. Syst. 2000, 52, 75.
[12] Xia, A. L.; Wu, H. L.; Fang, D. M.; Ding, Y. J.; Hu, L. Q.; Yu, R. Q. J. Chemom. 2005, 19, 65.
[13] Jiang, J. H.; Wu, H. L.; Chen, Z. P.; Yu, R. Q. Anal. Chem. 1999, 71, 4254.
[14] Jiang, J. H.; Wu, H. L.; Li, Y.; Yu, R. Q. J. Chemom. 1999, 13, 557.
[15] Escandar, G. M.; Faber, N. M.; Goicoechea, H. C.; Muñoz, de la Peña, A.; Olivieri, A. C.; Poppi, R. J. Trends Anal. Chem. 2007, 26, 752.
[16] Moore, A. W.; Jorgenson, J. W. Anal. Chem. 1993, 65, 188.
[17] Andrew, K. N.; Rutan, S. C.; Worsfold, P. J. Anal. Chim. Acta 1999, 388, 315.
[18] Boelens, H. F. M.; Dijkstra, R. J.; Eilers, P. H. C.; Fitzpatrick, F.; Westerhuis, J. J. Chromatogr. A 2004, 1057, 21.
[19] Zhang, Y.; Wu, H. L.; Xia, A. L.; Hu, L. H.; Zou, H. F.; Yu, R. Q. J. Chromatogr. A 2007, 1167, 178.
[20] Vogt, F.; Rebstock, K.; Tacke, M. Chemom. Intell. Lab. Syst. 2000, 50, 175.
[21] Hermans, A.; Keithley, R. B.; Kita, J. M.; Sombers, L. A.; Wightman, R. M. Anal. Chem. 2008, 80, 4040.
[22] Furusjö, E.; Danielsson, L. G. Chemom. Intell. Lab. Syst. 2000, 50, 63.
[23] Zhang, Z. M.; Chen, S.; Liang, Y. Z.; Liu, Z. X.; Zhang, Q. M.; Ding, L. X. J. Raman Spectrosc. 2010, 4, 659.
[24] Bro, R.; Kiers, H. A. L. J. Chemom. 2003, 17, 274.
/
〈 |
|
〉 |