Article

Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose

  • Tian Ye ,
  • Ju Benzhi ,
  • Zhang Shufen
Expand
  • State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2015-12-03

  Online published: 2016-02-23

Supported by

Project supported by innovative research groups of the National Natural Science Fund Committee of Science (No. 21421005), the National Natural Science Foundation of China (No. 21376041), and Innovation team of Ministry of Education (IRT-13R06).

Abstract

Responsive polymers have attracted great interests in many application fields. Thermoresponsive polymers are especially appealing, and have been applied in biomedical and biotechnological fields. A thermoresponsive polymer, 2-hydroxy-3-isopropoxypropyl hydroxyethyl cellulose (HIPEC), was prepared by etherification reaction, which grafted isopropyl glycidyl ether (IPGE) onto hydroxyethyl cellulose (HEC). The HIPEC was characterized by 1H NMR, 13C NMR, and 2D HSQC NMR, and the molar substitution (MS) of HIPEC was determined by 1H NMR. The lower critical solution temperature (LCST) of HIPEC can be tuned from 17.0~43.0 ℃ by changing MS of hydrophobic groups from 1.21~2.88. The salt concentration has a significant influence on LCST, the experiment results indicated that the LCST of HIPEC decreased with increasing NaCl concentration. Amphiphilic, thermoresponsive polymers can form micelles in aqueous solution and encapsulate guest molecules. Fluorescence spectroscopy and dynamic light scattering (DLS) showed that HIPEC can assemble into micelles, and micelles diameter significantly increase with increasing temperature. It is indicated that the morphologies of the HIPEC micelles can be varied by changing temperature. The critical micelle concentrations (CMC) of HIPEC which were measured by fluorescence spectroscopy decreased with increasing of the MS of hydrophobic groups. Additionally, using Nile Red as a probe, fluorescence spectroscopy and confocal laser scan microscope (CLSM) were applied to the HIPEC aqueous solution to examine the encapsulation of Nile Red aqueous solutions of the HIPEC. The research results show that Nile Red can be encapsulated and stabilized in the hydrophobic core of HIPEC micelles. The fluorescence intensity of Nile Red increased with increasing of HIPEC concentration, and there is a sharp increase in the number of HIPEC micelles above CMC. Because the morphologies of HIPEC micelles were disrupted when the temperature reached the LCST, the Nile Red which was capsulated in HIPEC micelles can be slowly released from HIPEC micelles over a much longer period of time, and the release process can be controlled by changing temperature.

Cite this article

Tian Ye , Ju Benzhi , Zhang Shufen . Synthesis and Self-Assembly Behavior of Temperature Responsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose[J]. Acta Chimica Sinica, 2016 , 74(4) : 369 -374 . DOI: 10.6023/A15120755

References

[1] Obeid, R.; Maltseva, E.; Thuenemann, A. F.; Tanaka, F.; Winnik, F. M. Macromolecules 2009, 42, 2204.
[2] Hu, W.; Zhang, Y. Acta Chim. Sinica 2010, 68, 1855. (胡炜, 张颖, 化学学报, 2010, 68, 1855.)
[3] Sun, Y.; Ran, Z.; Tang, H.; Li, Y.; Song, W.; Ren, Q.; Yang, W.; Kong, J. Chin. J. Chem. 2013, 31, 787.
[4] Guner, P. T.; Demirel, A.L. J. Phys. Chem. B 2012, 116, 14510.
[5] Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602. (丁妍春, 俞燕蕾, 韦嘉, 化学学报, 2014, 72, 602.)
[6] Yang, J.; Zhang, D.; Jiang, S.; Yang, J.; Nie, J. J. Colloid Interface Sci. 2010, 352, 405.
[7] Liu, W.; Wang, Y.; Li, Y.; Wang, F.; Yang, X.; Sun, T.; Du, J.; Wang, J. Chin. J. Chem. 2014, 32, 51.
[8] Hu, Y. F.; Darcos, V.; Monge, S.; Suming, L.; Yang, Z.; Feng, S. J. Mater. Chem. B 2014, 2, 2738.
[9] Qiu, Y.; Park, K. Adv. Drug Delivery Rev. 2012, 64, 49.
[10] Huang, C. H.; Wang, C. F.; Don, T. M.; Chiu, W. Y. Cellulose 2013, 20, 1791.
[11] Kang, H.; Liu, R.; Huang, Y. Acta Chim. Sinica 2013, 71, 114. (康宏亮, 刘瑞刚, 黄勇, 化学学报, 2013, 71, 114.)
[12] Ghimici, L.; Constantin, M. J. Hazardous Mater. 2011, 192, 1009.
[13] Liu, W. Y.; Liu, Y. J.; Hao, X. H.; Zeng, G. S.; Wang, W.; Liu, R. G.; Huang, Y. Carbohydr. Polym. 2012, 88, 290.
[14] Jing, Y.; Wu, P.Y. Cellulose 2013, 20, 67.
[15] Lu, X.; Hu, Z.; Schwartz, J. Macromolecules 2002, 35, 9164.
[16] Tian, Y.; Ju, B.; Zhang, S.; Duan, X.; Dong, D. J. Biomater. Sci. Polym. Ed. 2015, 26, 1100.
[17] Yuan, X.; Ju, B.; Zhang, S. Carbohydr. Polym. 2014, 114, 530.
[18] Sagle, L. B.; Zhang, Y.; Litosh, V. A.; Chen, X.; Cho, Y.; Cremer, P. S. J. Am. Chem. Soc. 2009, 131, 9304.
[19] Lutz, J. F.; Akdemir, O.; Hoth, A. J. Am. Chem. Soc. 2006, 128, 13046.
[20] Wei, H.; Cheng, C.; Chang, C.; Chen, W. Q.; Cheng, S.; Zhang, X. Z.; Zhuo, R. X. Langmuir 2008, 24, 4564.
[21] Ju, B.; Yan, D.; Zhang, S. Carbohydr. Polym. 2012, 87, 1404.
[22] Lin, C.; Zhao, J.; Song, L. Acta Chim. Sinica 2009, 67, 381. (林翠英, 赵剑曦, 宋利, 化学学报, 2009, 67, 381.)
[23] Kim, S. H.; Tan, J. P. K.; Nederberg, F.; Fukushima, K.; Yang, Y. Y.; Waymouth, R. M.; Hedrick, J. L. Macromolecules 2009, 42, 25.
[24] Park, J.; Moon, M.; Seo, M.; Choi, H.; Kim, S.Y. Macromolecules 2010, 43, 8304.

Outlines

/