Article

Characterization and Influence Factors of PM2.5 Emitted from Crop Straw Burning

  • Wang Yujue ,
  • Hu Min ,
  • Wang Yu ,
  • Qin Yanhong ,
  • Chen Hongyang ,
  • Zeng Limin ,
  • Lei Jianrong ,
  • Huang Xiaofeng ,
  • He Lingyan ,
  • Zhang Ruiqin ,
  • Wu Zhijun
Expand
  • a State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871;
    b Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055;
    c Department of Chemistry, Zhengzhou University, Zhengzhou 450001

Received date: 2016-01-05

  Online published: 2016-02-23

Supported by

Project supported by the Nonprofit Research Projects of Environmental Protection Department of China (No. 201409010), the National Natural Science Foundation of China (Nos. 91544214, 21190052) and the Special Fund for Strategic Pilot Technology Chinese Academy of Sciences (No. XDB05010500).

Abstract

Large quantities of particulate pollutants are emitted into the atmosphere during biomass burning processes. In China, large amounts of agricultural residues are burned in the field during harvest seasons, which influence regional air quality and human health. Corn and wheat are two major crops grown in China, whose burning was simulated in this study. The controlled laboratory simulation of straw burning was performed in the Laboratory of Biomass Burning Simulation at Peking University Shenzhen Graduate School. The burning simulation system was improved and verified. Straw burning aerosols (PM2.5) samples were collected and measured by gravimetric method. Organic carbon (OC) and elemental carbon (EC) were measured by thermal/optical method. Water-soluble inorganic ions and organic matter were measured by ion chromatography. Emission level, characterization and influence factors of crop straw burning aerosols are discussed. PM2.5 emission factors of corn and wheat straw burning are 1082.8 and 835.7~897.3 mg/kg, respectively. Organic matter (OM), which is calculated by multiplying organic carbon (OC) by 1.3, is the major component of PM2.5, accounting for 42%~66% of the total mass. Nearly half (37%~50%) of OM are water soluble. Cl- and K+are two major components among water-soluble inorganic ions, accounting for 4%~15% and 2%~14% of total particle mass, respectively. The K+/EC ratio is 0.5~3.8. The proportions of these species in PM2.5 are comparable to previous studies. Straw moisture content and burning temperature influence the emission level and characterization of straw burning aerosols. Emission factors of PM2.5 and OC increase with the increase of straw moisture content because of incomplete burning. With higher moisture content, more thermal energy is used for the evaporation of water, lowering the burning temperature. Then less proportion of K+and Cl- are released from biomass into the smoke. Therefore, their contributions to the particle mass decrease with the increase of straw moisture content. The emissions of PM2.5 and OC/EC by crop straw burning in the field are estimated based on the emission factors obtained in this study. Corn and wheat burning in the field yield 92.7 Gg PM2.5 and 47.5 Gg OC every year in China, accounting for important fractions among the total mass.

Cite this article

Wang Yujue , Hu Min , Wang Yu , Qin Yanhong , Chen Hongyang , Zeng Limin , Lei Jianrong , Huang Xiaofeng , He Lingyan , Zhang Ruiqin , Wu Zhijun . Characterization and Influence Factors of PM2.5 Emitted from Crop Straw Burning[J]. Acta Chimica Sinica, 2016 , 74(4) : 356 -362 . DOI: 10.6023/A16010008

References

[1] Simoneit, B. R. T. Appl. Geochem. 2002, 17, 129.
[2] Anderson, B. E.; Grant, W. B.; Gregory, G. L.; Browell, E. V.; Collins, J. E.; Sachse, G. W.; Bagwell, D. R.; Hudgins, C. H.; Blake, D. R.; Blake, N. J. J. Geophys. Res. 1996, 101, 24117.
[3] Cheng, Y.; Engling, G.; He, K. B.; Duan, F. K.; Ma, Y. L.; Du, Z. Y.; Liu, J. M.; Zheng, M.; Weber, R. J. Atmos. Chem. Phys. 2013, 13, 7765.
[4] Khan, A. A.; de Jong, W.; Jansens, P. J.; Spliethoff, H. Fuel Process. Technol. 2009, 90, 21.
[5] Radzi bin Abas, M.; Oros, D. R.; Simoneit, B. R. Chemosphere 2004, 55, 1089.
[6] Andreae, M. O.; Merlet, P. Global Biogeochem. Cycles 2001, 15, 955.
[7] Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M. O.; Helas, G.; Parmar, R.; Herrmann, H. J. Geophys. Res. 2007, 112.
[8] Streets, D. G.; Yarber, K. F.; Woo, J. H.; Carmichael, G. R. Global Biogeochem. Cycles 2003, 17, 1099.
[9] Cao, G. L.; Zhang, X. Y.; Zheng, F. C. Atmos. Environ. 2006, 40, 6516.
[10] Yan, X. Y.; Ohara, T.; Akimoto, H. Atmos. Environ. 2006, 40, 5262.
[11] Li, X.; Wang, S.; Duan, L.; Hao, J.; Li, C.; Chen, Y.; Yang, L. Environ. Sci. Technol. 2007, 41, 6052.
[12] Hays, M. D.; Fine, P. M.; Geron, C. D.; Kleeman, M. J.; Gullett, B. K. Atmos. Environ. 2005, 39, 6747.
[13] Turn, S. Q.; Jenkins, B. M.; Chow, J. C.; Pritchett, L. C.; Campbell, D.; Cahill, T.; Whalen, S. A. J. Geophys. Res.-Atmos. 1997, 102, 3683.
[14] Li, J. F.; Song, Y.; Mao, Y.; Mao, Z. C.; Wu, Y. S.; Li, M. M.; Huang, X.; He, Q. C.; Hu, M. Atmos. Environ. 2014, 92, 442.
[15] Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M. Atmos. Environ. 2014, 98, 25.
[16] Shen, G.; Xue, M.; Wei, S.; Chen, Y.; Wang, B.; Wang, R.; Shen, H.; Li, W.; Zhang, Y.; Huang, Y.; Chen, H.; Wei, W.; Zhao, Q.; Li, B.; Wu, H.; Tao, S. J. Environ. Sci. 2013, 25, 511.
[17] Lu, H.; Zhu, L.; Zhu, N. Atmos. Environ. 2009, 43, 978.
[18] Ortiz de Zárate, I.; Ezcurra, A.; Lacaux, J. P.; Van Dinh, P. Atmos. Environ. 2000, 34, 3183.
[19] Nguyen, B. C.; Putaud, J. P.; Mihalopoulos, N.; Bonsang, B.; Doan, C. Environ. Monit. Assess. 1994, 31, 131.
[20] Levin, E. J. T.; McMeeking, G. R.; Carrico, C. M.; Mack, L. E.; Kreidenweis, S. M.; Wold, C. E.; Moosmüller, H.; Arnott, W. P.; Hao, W. M.; Collett, J. L.; Malm, W. C. J. Geophys. Res. 2010, 115.
[21] Dhammapala, R.; Claiborn, C.; Corkill, J.; Gullett, B. Atmos. Environ. 2006, 40, 1007.
[22] Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658. (郭松, 胡敏, 郭庆丰, 尚冬杰, 化学学报, 2014, 72, 658.)
[23] Bae, M.-S.; Park, S.-S. Asian J. Atmos. Environ. 2013, 7, 95.
[24] Chen, L. W. A.; Verburg, P.; Shackelford, A.; Zhu, D.; Susfalk, R.; Chow, J. C.; Watson, J. G. Atmos. Chem. Phys. 2010, 10, 6617.
[25] Bjorkman, E.; Stromberg, B. Energy Fuels 1997, 11, 1026.
[26] Jensen, P. A.; Frandsen, F. J.; Dam-Johansen, K.; Sander, B. Energy Fuels 2000, 14, 1280.
[27] Knudsen, J. N.; Jensen, P. A.; Dam-Johansen, K. Energy Fuels 2004, 18, 1385.
[28] He, L. Y.; Lin, Y.; Huang, X. F.; Guo, S.; Xue, L.; Su, Q.; Hu, M.; Luan, S. J.; Zhang, Y. H. Atmos. Chem. Phys. 2010, 10, 11535.
[29] Guo, S.; Hu, M.; Wang, Z. B.; Slanina, J.; Zhao, Y. L. Atmos. Chem. Phys. 2010, 10, 947.
[30] Huan, N.; Zeng, L. M.; Shao, M.; Cui, L.; Mao, J. T.; Zhou, N.; Dong, H. B.; Yu, Z. Y.; Luo, Z. M. Acta Sci. Nat. Univ. Pekinensis 2006, 42, 265 (in Chinese). (郇宁, 曾立民, 邵敏, 崔良, 毛节泰, 周楠, 董华斌, 俞仲英, 罗志明, 北京大学学报(自然科学版), 2006, 42, 265.)
[31] Koopmans, A.; Koppejan, J. Regional Consultation on Modern Applications of Biomass Energy 1997, 6.
[32] Hao, W. M.; Liu, M. H. Global Biogeochem. Cycles 1994, 8, 495.

Outlines

/