Syntheses and Properties of Five-Ring Fused Azo- and Thio-Aromatic Compounds Containing Imide Substituent
Received date: 2015-12-18
Online published: 2016-03-03
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51273212, 51303201).
Five-ring fused azo-and thio-aromatic compounds 1 and 2 containing imide substituent were designed and synthesized. 3,4-Dibromo-1-(2-ethylhexyl)-1H-pyrrole-2,5-dione reacted with lithium indyl and benzothiophene-3-boronic acid respectively, affording intermediates 3 and 4. Compound 3 was intramolecular cyclized in the presence of PdCl2 to give target compound 1. And compound 2 was prepared through intramolecular cyclization of intermediate 4 by means of photochemical ringclosure reaction and oxidation. The physicochemical properties of compounds 1 and 2 were thoroughly investigated with TGA, UV-vis absorption spectra and cyclic voltammetry. Experimental results showed the introduction of imide substituent not only increased the solubility of compounds 1 and 2, but also decreased their energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The HOMO/LUMO energy levels of compounds 1 and 2 are -5.58/-2.25 eV and -6.04/-3.51 eV respectively. Single crystals of compound 1 were grown through solvent evaporation method in the mixture of dichloromethane and petroleum ether. Single crystal structure revealed compound 1 has a planar conjugated core and forms dimmer in the crystal. Strong π-π intermolecular interactions exist in the dimmer, and hydrogen bonds (NH…O=C) are observed among dimmers. The charge carrier mobilities of compounds 1 and 2 were investigated through thin film transistors. The transistors were fabricated with top-contact/bottom-gate device configurations. And thin films were deposited in vacuum on octadecyltrichlorosilane (OTS)-modified Si/SiO2 substrates. Transistors performance of compound 2 displays obvious p-type performance with a mobility of 2.75×10-3 cm2·V-1·s-1. However, compound 1 exhibited no organic field-effect transistor (OFET) behavior. In order to understand the different device performances of compounds 1 and 2, their thin films were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD). AFM images showed that compound 1 formed continuous thin film with small size of microstructures, the existence of grain boundaries hindered the transport of charge carriers in the film. XRD curves revealed that compound 2 formed crystalline thin films. Though the continuity of 2 films was worse than that of 1, the larger size of microstructures and the crystalline property of the films facilitated the transport of charge carriers.
Yang Ning , Qiao Xiaolan , Fang Renren , Tao Jingwei , Hao Jian , Li Hongxiang . Syntheses and Properties of Five-Ring Fused Azo- and Thio-Aromatic Compounds Containing Imide Substituent[J]. Acta Chimica Sinica, 2016 , 74(4) : 335 -339 . DOI: 10.6023/A15120782
[1] Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Chem. Rev. 2010, 110, 3.
[2] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.
[3] Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477.
[4] Meager, I.; Nikolka, M.; Schroeder, B. C.; Nielsen, C. B.; Planells, M.; Bronstein, H.; McCulloch, I. Adv. Funct. Mater. 2014, 24, 7109.
[5] Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.
[6] Parry, A. V.; Lu, K.; Tate, D. J.; Urasinska-Wojcik, B.; Caras- Quintero, D.; Majewski, L. A.; Turner, M. L. Adv. Funct. Mater. 2014, 24, 6677.
[7] Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724.
[8] Jiang, Y.; Xu, H.; Zhao, N.; Peng, Q.; Shuai, Z. Acta Chim. Sinica 2014, 72, 201. (江昱倩, 徐海华, 赵妮, 彭谦, 帅志刚, 化学学报, 2014, 72, 201.)
[9] Zhu, M.; Luo, H.; Wang, L.; Yu, G.; Liu, Y. Acta Chim. Sinica 2012, 70, 1599. (朱敏亮, 罗皓, 王丽萍, 于贵, 刘云圻, 化学学报, 2012, 70, 1599.)
[10] Benight, S. J.; Wang, C.; Tok, J. B. H.; Bao, Z. Prog. Polym. Sci. 2013, 38, 1961.
[11] Baude, P. F.; Ender, D. A.; Haase, M. A.; Kelley, T. W.; Muyres, D. V.; Theiss, S. D. Appl. Phys. Lett. 2003, 82, 3964
[12] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259.
[13] Bheemireddy, S. R.; Ubaldo, P. C.; Rose, P. W.; Finke, A. D.; Zhuang, J.; Wang, L.; Plunkett, K. N. Angew. Chem. Int. Ed. 2015, 54, 15762.
[14] Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169.
[15] Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T. Chem. Mater. 2004, 16, 4980.
[16] Aubry, J. M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668.
[17] Truong, M. A.; Nakano, K. J. Org. Chem. 2015, 80, 11566.
[18] Kobilka, B. M.; Dubrovskiy, A. V.; Ewan, M. D.; Tomlinson, A. L.; Larock, R. C.; Chaudhary, S.; Jeffries-El, M. Chem. Commun. 2012, 48, 8919.
[19] Schroeder, B. C.; Ashraf, R. S.; Thomas, S.; White, A. J.; Biniek, L.; Nielsen, C. B.; Anthopoulos, T. D. Chem. Commun. 2012, 48, 7699.
[20] Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614.
[21] Zhao, G.; Dong, H.; Zhao, H.; Jiang, L.; Zhang, X.; Tan, J.; Hu, W. J. Mater. Chem. 2012, 22, 4409.
[22] Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.
[23] Liang, Z.; Tang, Q.; Xu, J.; Miao, Q. Adv. Mater. 2011, 23, 1535.
[24] Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.; Chen, S.; Zhan, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 13281.
[25] Tang, M. L.; Okamoto, T.; Bao, Z. N. J. Am. Chem. Soc. 2006, 128, 16002.
[26] Li, R.; Jiang, L.; Meng, Q.; Gao, J.; Li, H.; Tang, Q.; Zhu, D. Adv. Mater. 2009, 21, 4492.
[27] Li, J.; Wang, M.; Ren, S.; Gao, X.; Hong, W.; Li, H.; Zhu, D. J. Mater. Chem. 2012, 22, 10496.
[28] Katsuta, S.; Miyagi, D.; Yamada, H.; Okujima, T.; Mori, S.; Nakayama, K. I.; Uno, H. Org. Lett. 2011, 13, 1454.
[29] Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.; Pisula, W.; Müllen, K. Chem. Commun. 2008, 13, 1548.
[30] Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Konemann, M.; Hoffken, H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Wurthner, F.; Bao, Z. N. Adv. Funct. Mater. 2010, 20, 2148.
[31] Lv, A.; Li, Y.; Yue, W.; Jiang, L.; Dong, H.; Zhao, G.; Meng, Q.; Jiang, W.; He, Y.; Li, Z.; Wang, Z.; Hu, W. Chem. Commun. 2012, 48, 5154.
[32] Wang, H.; Shi, Q.; Lin, Y.; Fan, H.; Cheng, P.; Zhan, X.; Zhu, D. Macromolecules 2011, 44, 4213.
[33] Zhang, G.; Shen, J.; Cheng, H.; Zhu, L.; Fang, L.; Luo, S.; Wang, P. G. J. Med. Chem. 2005, 48, 2600.
[34] Wang, S.; Hong, W.; Ren, S.; Li, J.; Wang, M.; Gao, X.; Li, H. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 4272.
/
| 〈 |
|
〉 |