Review

Supramolecular Self-Assembly Based on Natural Small Molecules

  • Gao Yuxi ,
  • Hu Jun ,
  • Ju Yong
Expand
  • a Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084;
    b State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

Received date: 2016-01-08

  Online published: 2016-03-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21472108), the National Basic Research Program of China (973 Program, No. 2012CB821600), and Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, CIAC.

Abstract

Natural products have been widely used in the construction of supramolecular self-assemblies due to not only their abundant resources, unique chiral structures, and multiple reaction sites, but also the good biocompatibility and the controllable degradability. Through the simple chemical modification natural products-based functional molecules would self-assemble into various supramolecular assemblies primarily promoted by non-covalent interactions, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, and charge-transfer interactions. During the assembly process, their unique molecular chirality would be transferred and magnified into supramolecular assemblies, thus providing a facile method to fabricate helical ribbons, nanotubes, and other chiral nanostructures. Furthermore, their good biocompatibility and biological activity endow the assemblies with the ability to be widely applied in tissue engineering, drug delivery, cell imaging, and so on. In this review, recent developments of supramolecular self-assemblies based on amino acids, sugars, nucleosides, steroids, triterpenoids and other natural products were summarized.

Cite this article

Gao Yuxi , Hu Jun , Ju Yong . Supramolecular Self-Assembly Based on Natural Small Molecules[J]. Acta Chimica Sinica, 2016 , 74(4) : 312 -329 . DOI: 10.6023/A16010016

References

[1] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
[2] Rybtchinski, B. ACS Nano 2011, 5, 6791.
[3] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.
[4] Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11, 1025.
[5] Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.
[6] Díaz, D. D.; Kühbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40, 427.
[7] Hong, C.; Wang, H. Acta Chim. Sinica 2014, 72, 739. (洪传敏, 王海水, 化学学报, 2014, 72, 739.)
[8] Yang, W.; Yu, S.; Chen, S.; Liu, Y.; Shao, Z.; Chen, X. Acta Chim. Sinica 2014, 72, 1164. (杨文华, 俞淑英, 陈胜, 刘也卓, 邵正中, 陈新, 化学学报, 2014, 72, 1164.)
[9] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047. (冉茂双, 施冬键, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)
[10] Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.
[11] Cui, H.; Webber, M. J.; Stupp, S. I. Peptide Science 2010, 94, 1.
[12] Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
[13] Du, X.; Zhou, J.; Xu, B. Chem. Asian J. 2014, 9, 1446.
[14] Schnerder, H.-J.; Agrawal, P.; Yatsimirsky, A. K. Chem. Soc. Rev. 2013, 42, 6777.
[15] Hosta-Rigau, L.; Zhang, Y.; Teo, B.; Postma, A.; Städler, B. Nanoscale 2013, 5, 89.
[16] Lu, J.; Ju, Y. Chin. J. Org. Chem. 2013, 33, 469. (卢金荣, 巨勇, 有机化学, 2013, 33, 469.)
[17] Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Chem. Soc. Rev. 2014, 43, 7257.
[18] Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B. Angew. Chem., Int. Ed. 2014, 53, 8104.
[19] Duan, P.; Cao, H.; Zhang, L.; Liu, M. Soft Matter 2014, 10, 5428.
[20] Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Beilstein J. Org. Chem. 2011, 7, 167.
[21] Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Adv. Mater. 2004, 16, 1440.
[22] Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9, 4198.
[23] Dubey, M.; Kumar, A.; Pandey, D. S. Chem. Commun. 2014, 50, 1675.
[24] Friggeri, A.; Feringa, B. L.; van Esch, J. J. Controlled Release 2004, 97, 241.
[25] Haridas, V.; Sahu, S.; Sapala, A. R. Chem. Commun. 2012, 48, 3821.
[26] Lv, K.; Qin, L.; Wang, X.; Zhang, L.; Liu, M. Phys. Chem. Chem. Phys. 2013, 15, 20197.
[27] Wang, X.; Duan, P.; Liu, M. Chem. Commun. 2012, 48, 7501.
[28] Wang, X.; Liu, M. Chem. Eur. J. 2014, 20, 10110.
[29] Qin, L.; Duan, P.; Xie, F.; Zhang, L.; Liu, M. Chem. Commun. 2013, 49, 10823.
[30] Shen, Z.; Wang, T.; Liu, M. Chem. Commun. 2014, 50, 2096.
[31] Shen, Z.; Wang, T.; Liu, M. Langmuir 2014, 30, 10772.
[32] Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50, 3702.
[33] Suzuki, M.; Hanabusa, K. Chem. Soc. Rev. 2009, 38, 967.
[34] Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Chem. Eur. J. 2008, 14, 2133.
[35] Song, Q.; Geng, H.; Wang, L.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Acta Chim. Sinica 2015, 73, 423. (宋倩颖, 耿慧敏, 王璐, 叶霖, 张爱英, 邵自强, 冯增国, 化学学报, 2015, 73, 423.)
[36] Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Langmuir 2003, 19, 8622.
[37] Reches, M.; Gazit, E. Science 2003, 300, 625.
[38] Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Prog. Chem. 2014, 26, 1445. (赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏, 化学进展, 2014, 26, 1445.)
[39] Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.
[40] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Chem. Mater. 2008, 20, 1522.
[41] Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Angew. Chem., Int. Ed. 2007, 46, 2431.
[42] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ou-yang, Z. Chem. Eur. J. 2008, 14, 5974.
[43] Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.
[44] Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Adv. Mater. 2006, 18, 611.
[45] Tang, C.; Smith, A. M.; Collins, R. F.; Ulijn, R. V.; Saiani, A. Langmuir 2009, 25, 9447.
[46] Yang, Z.; Xu, K.; Wang, L.; Gu, H.; Wei, H.; Zhang, M.; Xu, B. Chem. Commun. 2005, 41, 4414.
[47] Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu, B. Angew. Chem., Int. Ed. 2007, 46, 8216.
[48] Yang, Z.; Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038.
[49] Zhang, Y.; Kuang, Y.; Gao, Y.; Xu, B. Langmuir 2011, 27, 529.
[50] Wang, H.; Yang, Z. Nanoscale 2012, 4, 5259.
[51] Gao, J.; Wang, H.; Wang, L.; Wang, J.; Kong, D.; Yang, Z. J. Am. Chem. Soc. 2009, 131, 11286.
[52] Wang, H.; Ren, C.; Song, Z.; Wang, L.; Chen. X.; Yang, Z. Nanotechnology 2010, 21, 225606.
[53] Shi, Y.; Wang, Z.; Zhang, X.; Xu, T.; Ji, S.; Ding, D.; Yang, Z.; Wang, L. Chem. Commun. 2015, 51, 15265.
[54] Ren, C.; Song, Z.; Zheng, W.; Chen, X.; Wang, L.; Kong, D.; Yang, Z. Chem. Commun. 2011, 47, 1619.
[55] Birchall, L. S.; Roy, S.; Jayawarna, V.; Hughes, M.; Irvine, E.; Okorogheye, G. T.; Saudi, N.; Santis, E. D.; Tuttle, T.; Edwards, A. A.; Ulijn, R. V. Chem. Sci. 2011, 2, 1349.
[56] Chabre, Y. M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4657.
[57] Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328.
[58] Vidyasagar, A.; Handore, K.; Sureshan, K. M. Angew. Chem., Int. Ed. 2011, 50, 8021.
[59] Wang, K. Prog. Chem. 2015, 27, 775. (王克让, 化学进展, 2015, 27, 775.)
[60] Ryu, J.-H.; Lee, E.; Lim, Y.-B.; Lee, M. J. Am. Chem. Soc. 2007, 129, 4808.
[61] Lee, D.-W.; Kim, T.; Park, I.-S.; Huang, Z.; Lee, M. J. Am. Chem. Soc. 2012, 134, 14722.
[62] Lin, Y.; Wang, A.; Qiao, Y.; Gao, C.; Drechsler, M.; Ye, J.; Yan, Y.; Huang, J. Soft Matter 2010, 6, 2031.
[63] Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun. 2005, 41, 2035.
[64] Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, 16333.
[65] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.
[66] Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039.
[67] Sun, K.; Xiao, C.; Liu, C.; Fu, W.; Wang, Z.; Li, Z. Langmuir 2014, 30, 11040.
[68] Huang, Y.; Hu, J.; Kuang, W.; Wei, Z.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554.
[69] Wang, K.; An, H.; Wang, Y.; Zhang, J.; Li, X. Org. Biomol. Chem. 2013, 11, 1007.
[70] Wang, K.; An, H.; Qian, F.; Wang, Y.; Zhang, J.; Li, X. RSC Adv. 2013, 3, 23190.
[71] Wang, K.; Han, D.; Cao, G.; Li, X. Chem. Asian J. 2015, 10, 1204.
[72] Wang, K.; An, H.; Wu, L.; Zhang, J.; Li, X. Chem. Commun. 2012, 48, 5644.
[73] Clemente, M. J.; Fitremann, J.; Mauzac, M.; Serrano, J. L.; Oriol, L. Langmuir 2011, 27, 15236.
[74] Clemente, M. J.; Romero, P.; Serrano, J. L.; Fitremann, J.; Oriol, L. Chem. Mater. 2012, 24, 3847.
[75] Skilling, K. J.; Ndungu, A.; Kellam, B.; Ashford, M.; Bradshaw, T. D.; Marlow, M. J. Mater. Chem. B 2014, 2, 8412.
[76] Moreau, L.; Barthélémy, P.; Maataoui, M. E.; Grinstaff, M. W. J. Am. Chem. Soc. 2004, 126, 7533.
[77] Du, X.; Li, J.; Gao, Y.; Kuang, L.; Xu, B. Chem. Commun. 2012, 48, 2098.
[78] Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.
[79] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815. (邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73, 815.)
[80] Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 709. (蔺超, 翟伟, 范楼珍, 李晓宏, 化学学报, 2014, 72, 709.)
[81] Adhikari, B.; Shah, A.; Kraatz, H.-B. J. Mater. Chem. B 2014, 2, 4802.
[82] Peters, G. M.; Skala, L. P.; Plank, T. N.; Hyman, B. J.; Reddy, G. N. M.; Marsh, A.; Brown, S. P.; Davis, J. T. J. Am. Chem. Soc. 2014, 136, 12596.
[83] Wu, J.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T.; Li, F.; Huang, C. Chem. Eur. J 2009, 15, 6234.
[84] Tu, T.; Fang, W.; Bao, X.; Li, X.; Dötz, K. H. Angew. Chem., Int. Ed. 2011, 50, 6601.
[85] Xu, F.; Wang, H.; Zhao, J.; Liu, X.; Li, D.; Chen, C.; Ji, J. Macromolecules 2013, 46, 4235.
[86] Lin, Y.-C.; Kachar, B.; Weiss, R. G. J. Am. Chem. Soc. 1989, 111, 5542.
[87] Xu, Z.; Peng, J.; Yan, N.; Yu, H.; Zhang, S.; Liu, K.; Fang, Y. Soft Matter 2013, 9, 1091.
[88] Yu, X.; Li, Y.; Yin, Y.; Yu, D. Mater. Sci. Eng., C 2012, 32, 1695.
[89] Zhou, G.; Li, Y.; Yu, X.; Yu, D.; Yin, Y. Supramol. Chem. 2012, 24, 234.
[90] Smith, M. M.; Smith, D. K. Soft Matter 2011, 7, 4856.
[91] Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. J. Colloid Interface Sci. 2008, 327, 94.
[92] Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. Langmuir 2008, 24, 2992.
[93] Gao, D.; Xue, M.; Peng, J.; Liu, J.; Yan, N.; He, P.; Fang, Y. Tetrahedron 2010, 66, 2961.
[94] George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489.
[95] Svobodová, H.; Noponen, V.; Kolehmainen, E.; Sievänen, E. RSC Adv. 2012, 2, 4985.
[96] Kong, L.; Sun, T.; Zhang, F.; Xin, F.; Hao, A. Prog. Chem. 2012, 24, 790. (孔丽, 孙涛, 张峰, 辛飞飞, 郝爱友, 化学进展, 2012, 24, 790.)
[97] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664.
[98] Sumiya, S.; Shiraishi, Y.; Hirai, T. New J. Chem. 2013, 37, 2642.
[99] Liu, J.; Yan, J.; Yuan, X.; Liu, K.; Peng, J.; Fang, Y. J. Colloid Interface Sci. 2008, 318, 397.
[100] He, P.; Liu, J.; Liu, K.; Ding, L.; Yan, J.; Gao, D.; Fang, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 127.
[101] Xing, P.; Chen, H.; Bai, L.; Zhao, Y. Chem. Commun. 2015, 51, 9309.
[102] Gao, Y.; Lu, J.; Wu, J.; Hu, J.; Ju, Y. RSC Adv. 2014, 4, 63539.
[103] van Herpt, J. T.; Areephong, J.; Stuart, M. C.; Browne, W. R.; Feringa, B. L. Chem. Eur. J. 2014, 20, 1737.
[104] Dutta, S.; Kar, T.; Mandal, D.; Das, P. K. Langmuir 2013, 29, 316.
[105] Yu, C.; Gao, C.; Lü, S.; Chen, C.; Huang, Y.; Liu, M. Chem. Eng. J. 2013, 228, 290.
[106] Mukhopadhyay, S.; Maitra, U. Current Science 2004, 87, 1666.
[107] Zhang, H.; Peng, J.; Liu, K.; Fang, Y. Prog. Chem. 2011, 23, 1591. (张荷兰, 彭军霞, 刘凯强, 房喻, 化学进展, 2011, 23, 1591.)
[108] Rich, A.; Blow, D. M. Nature 1958, 182, 423.
[109] Li, Y.; Holzwarth, J. F.; Bohne, C. Langmuir 2000, 16, 2038.
[110] Bohne, C. Langmuir 2006, 22, 9100.
[111] Jiang, L.; Wang, K.; Deng, M.; Wang, Y.; Huang, J. Langmuir 2008, 24, 4600.
[112] Qiao, Y.; Lin, Y.; Wang, Y.; Yang, Z.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J. Nano Lett. 2009, 9, 4500.
[113] Wang, H.; Xu, W.; Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2014, 118, 4693.
[114] Wang, H.; Song, S.; Hao, J.; Song, A. Chem. Eur. J. 2015, 21, 12194.
[115] Travaglini, L.; D’Annibale, A.; Schillén, K.; Olsson, U.; Sennato, S.; Pavel, N. V.; Galantini, L. Chem. Commun. 2012, 48, 12011.
[116] Sajisha, V. S.; Maitra, U. RSC Adv. 2014, 4, 43167.
[117] Li, Y.; Li, G.; Wang, X.; Li, W.; Su, Z.; Zhang, Y.; Ju, Y. Chem. Eur. J. 2009, 15, 6399.
[118] Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. Chem. Commun. 2015, 51, 10210.
[119] Ramírez-López, P.; de la Torre, M. C.; Asenjo, M.; Ramírez- Castellanos, J.; González-Calbet, J. M.; Rodríguez-Gimeno, A.; de Arellano, C. R.; Sierra, M. A. Chem. Commun. 2011, 47, 10281.
[120] Bag, B. G.; Maity, G. C.; Pramanik, S. R. Supramol. Chem. 2005, 65, 925.
[121] Bag, B. G.; Dinda, S. K.; Dey, P. P.; Mallia, V. A.; Weiss, R. G. Langmuir 2009, 25, 8663.
[122] Bag, B. G.; Dash, S. S. Nanoscale 2011, 3, 4564.
[123] Bag, B. G.; Majumdar, R. RSC Adv. 2012, 2, 8623.
[124] Bag, B. G.; Paul, K. Asian J. Org. Chem. 2012, 1, 150.
[125] Bag, B. G.; Majumdar, R.; Dinda, S. K.; Dey, P. P.; Maity, G. C.; Mallia, V. A.; Weiss, R. G. Langmuir 2013, 29, 1766.
[126] Hu, J.; Zhang, M.; Ju, Y. Soft Matter 2009, 5, 4971.
[127] Lu, J.; Hu, J.; Liu, C.; Gao, H.; Ju, Y. Soft Matter 2012, 8, 9576.
[128] Lu, J.; Hu, J.; Song, Y.; Ju, Y. Org. Lett. 2011, 13, 3372.
[129] Lu, J.; Gao, Y.; Wu, J.; Ju, Y. RSC Adv. 2013, 3, 23548.
[130] Lu, J.; Wu, J.; Ju, Y. New J. Chem. 2014, 38, 6050.
[131] Wu, J.; Lu, J.; Hu, J.; Gao, Y.; Ma, Q.; Ju, Y. RSC Adv. 2013, 3, 24906.
[132] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Nanoscale 2015, 7, 13568.
[133] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Langmuir 2016, 32, 1685.
[134] Gao, Y.; Li, Y.; Zhao, X.; Hu, J.; Ju, Y. RSC Adv. 2015, 5, 102097.
[135] Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Angew. Chem., Int. Ed. 2015, 54, 5408.
[136] Zhang, Q.; Qu, D.; Ma, X.; Tian, H. Chem. Commun. 2013, 49, 9800.
[137] Zhang, Q.; Yao, X.; Qu, D.; Ma, X. Chem. Commun. 2014, 50, 1567.
[138] Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.
[139] Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330. (范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)
[140] Yu, H.; Mizufune, H.; Uenaka, K.; Moritoki, T.; Koshima, H. Tetrahedron 2005, 61, 8932.
[141] Chen, G.; Xue, P.; Lu, R.; Song, D.; Bao, C.; Xu, T.; Zhao, Y. Chem. Res. Chin. Univ. 2009, 25, 178.
[142] Ji, W.; Liu, G.; Xu, M.; Dou, X.; Feng, C. Chem. Commun. 2014, 50, 15545.
[143] Vemula, P. K.; John, G. Acc. Chem. Res. 2008, 41, 769.
[144] John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715.
[145] John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5494.
[146] Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138.
[147] Nandi, S.; Altenbach, H.; Jakob, B.; Lange, K.; Ihizane, R.; Schneider, M. P. Org. Lett. 2011, 13, 1980.
[148] Chakraborty, P.; Roy, B.; Bairi, P.; Nandi, A. K. J. Mater. Chem. 2012, 22, 20291.
[149] Xing, P.; Chu, X.; Ma, M.; Li, S.; Hao, A. Phys. Chem. Chem. Phys. 2014, 16, 8346.

Outlines

/