Article

Dual Stimulus-responsive Fluorescence Behavior and Mechanism of P(NIPAM-co-RhBHA)-NP

  • Song Qiusheng ,
  • Zhou Wen ,
  • Wu Xinmin ,
  • Wu Fan
Expand
  • School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China

Received date: 2016-01-31

  Online published: 2016-03-03

Abstract

In the present study, based on spectral overlap between 1,8-naphthalimide and N-acrylyl-N'-rhodamine B acylhydrazine thiourea (RhBHA), reversible “on-off” ring reaction of RhBHA at various pH values, and thermosensitive property of poly(N-isopropyl acrylamide) (PNIPAM), a novel linear polymer P(NIPAM-co-RhBHA)-NP was prepared via a series of chemical reactions. Firstly, 4-(2-aminoethyl)amino-N-aminopropane-1,8-naphthalimide (NP-NH2) and RhBHA were prepared respectively, and they were used as the donor and acceptor to construct a fluorescence resonance energy transfer (FRET) system. Secondly, incorporating RhBHA into PNIPAM by reversible addition-fragmentation chain transfer polymerization (RAFT), P(NIPAM-co-RhBHA) was synthesized. Finally, P(NIPAM-co-RhBHA)-NP was fabricated by amide condensation between NP-NH2 and the as-prepared P(NIPAM-co-RhBHA). The structure of P(NIPAM-co-RhBHA)-NP was characterized via 1H NMR, FTIR, UV-vis and GPC. The fluorescence responsive behavior of the polymer to environmental temperature and pH value was investigated by photoluminescence (PL) in buffer solutions, and the mechanism was discussed in detail. The results indicate that, in an acidic solution, energy can be transferred from NP-NH2 moieties to RhBHA moieties via FRET mechanism, either pH values or environmental temperatures play important roles to affect the fluorescence emission of P(NIPAM-co-RhBHA)-NP.

Cite this article

Song Qiusheng , Zhou Wen , Wu Xinmin , Wu Fan . Dual Stimulus-responsive Fluorescence Behavior and Mechanism of P(NIPAM-co-RhBHA)-NP[J]. Acta Chimica Sinica, 2016 , 74(5) : 435 -440 . DOI: 10.6023/A16010073

References

[1] Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2009, 5, 2513.
[2] Song, Q. S.; Yang, Y.; Gao, K.; Ma, H. H. J. Lumin. 2013, 136, 437.
[3] Dai, S.; Ravi, P.; Tam, K. C. Soft Matter 2008, 4, 435.
[4] Yang, Y.; Song, Q. S.; Gao, K.; Ma, H. H.; Yang, S. S.; Li, T. J. Appl. Polym. Sci. 2014, 131, 1001.
[5] Li, C. H.; Hu, J. M.; Liu, S. Y. Soft Matter 2012, 8, 7096.
[6] Kim, H. J.; Lee, M. H.; Mutihac, L. Chem. Soc. Rev. 2012, 41, 1173.
[7] Song, Q. S.; Yang, S. S.; Sheng, R.; Li, T. Acta Chim. Sinica 2014, 72, 89. (宋秋生, 杨森森, 盛锐, 李谭, 化学学报, 2014, 72, 89.)
[8] Förster, T. Ann. Phys. 1984, 2, 55.
[9] Chen, K. J.; Chiu, Y. L.; Chen, Y. M.; Ho, Y. C.; Sung, H. W. Biomaterials 2011, 32, 2586.
[10] Kim, G. B.; Kim, Y. P. Theranostics 2012, 2, 127.
[11] Uchiyama, S.; Kimura, K.; Gota, C.; Okabe, K.; Kawamoto, K.; Inada, N.; Yoshihara, T.; Tobita, S. Chem. Eur. J. 2012, 18, 9552.
[12] Liu, S. Y.; Hu, J. M.; Li, C. H. Langmuir 2011, 44, 4699.
[13] Song, Q. S.; Gao, K.; Yao, W.; Yang, Y.; Ma, H. H. Acta Chim. Sinica 2012, 70, 2155. (宋秋生, 高康, 姚伟, 杨洋, 马海红, 化学学报, 2012, 70, 2155.)
[14] Kim, H. N.; Lee, M. H.; Kim, H. J. Chem. Soc. Rev. 2008, 37, 1465.
[15] Yang, Y. K.; Yook, K. J.; Tea, J. J. Am. Chem. Soc. 2005, 127, 16760.
[16] Yu, M. X.; Shi, M.; Chen, Z. G. Chem. Eur. J. 2008, 14, 6892.
[17] Shiraishi, Y.; Miyamoto, R.; Zhang, X. Org. Lett. 2007, 9, 3921.
[18] Hu, J. M.; Li, C. H.; Liu, S. Y. Langmuir 2010, 26, 724.
[19] Ko, S. K.; Yang, Y. K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150.
[20] Chang, W. B.; Li, K. A. Concise Handbook of Analytical Chemistry, Peking University Press, Beijing, 1981, pp. 262~263. (常文保, 李克安, 简明分析化学手册, 北京大学出版社, 北京, 1981, pp. 262~263.)
[21] Li, T.; Zhou, W.; Song, Q. S.; Fang, W. C. J. Photochem. Photobiol. A 2015, 302, 51.
[22] Li, C. H.; Liu, S. Y. J. Mater. Chem. 2010, 20, 10716.
[23] Birks, J. B. Photophysics of Aromatic Molecules, Wiley, New York, 1970, pp. 73~75.
[24] Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46, 2441.
[25] Xu, J. G.; Wang, Z. B. Fluorescence Analysis, Science Press, Beijing, 2006, pp. 12~13. (许金钩, 王尊本, 荧光分析, 科学出版社, 北京, 2006, pp. 12~13.)
[26] Zakerhamidi, M. S.; Ghanadzadeh, A.; Moghadam, M. Spectrochim. Acta Part A 2011, 78, 961.
[27] Osada, Y.; Gong, J. P. Adv. Mater. 1998, 10, 827.
[28] Galave, I.; Mattiasson, B. Enzyme. Microb. Tech. 1993, 15, 354.
[29] Vogt, A. P.; Gondi, S. R.; Sumerlin, B. S. Aust. J. Chem. 2007, 60, 396.
[30] Zeng, H. B.; Li, Y. B.; Zhang, H. Y.; Wang, X. G. Acta Polym. Sinica 2004, (3), 327. (曾洪波, 李耀邦, 张昊宇, 王晓工, 高分子学报, 2004, (3), 327.)
[31] Lai, J. T.; Filla, D.; Shea, R. Macromolecules 2002, 35, 6754.
[32] Vonlanthen, M.; Finney, N. S. J. Org. Chem. 2013, 78, 3980.
[33] Yang, X.; Guo, X.; Zhao, Y. Talanta 2002, 57, 883.

Outlines

/