Article

Mechanism Study of Mn(I) Complex-catalyzed Imines and Alkynes Dehydrogenation Coupling Reaction

  • Yang Yinuo ,
  • Zhang Qi ,
  • Shi Jing ,
  • Fu Yao
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2015-11-21

  Online published: 2016-03-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21325208, 21172209, 21361140372, 21202006), 973 Program (No. 2012CB215306), Fundamental Research Funds for the Central Universities (Nos. WK2060190025, WK2060190040, FRF-TP-14-015A2) and Science Foundation of The Chinese Academy of Sciences (No. KJCX2-EW-J02).

Abstract

With the development and widespread use of transition metal catalysts, C—H activation has become a hot topic in organic synthesis, especially in the construction of C—C bond of organic compounds. As an important and cheap catalyst, manganese complex has shown great potential for catalyzing C—H activation both in academic and industrial applications. In this paper, the mechanism of manganese-catalyzed dehydrogenative [4+2] annulation by C—H/N—H activation was investigated systematically with the aid of density functional theory (DFT) calculations in 1,4-dioxane solvent. In detail, we use M06-L/[SDD:6-311+G(d,p)(SMD)]//M06-L/[LANL2DZ:6-31G(d)] to examine the Gibbs free energy, structure and other properties of possible intermediates and transition states in this catalytic cycle. By comprehensive comparison and discussion, we obtained a favorable pathway consisting of five steps: (1) catalyst initiation occurred with the assistance of bromine anion rather than imide to form active catalyst; (2) alkyne inserted into the active catalyst to generate a seven-membered manganacycle after dissociation of a carbon monoxide; (3) double bond migration happened in this seven-membered manganacycle to form a product precursor; (4) the product precursor would dissociate by β-H elimination and generated product isoquinoline and active Mn—H complex; (5) the active Mn—H complex was subsequently combined with an imine followed by dehydrogenative C—H activation to complete the whole catalytic cycle. In this context, the reason for the highly atom-economical C—H activation by direct dehydrogenation (eliminates the necessity for oxidants or additives) has been clarified by this mechanism. The present study was aimed at further understanding of Mn(I)-catalyzed dehydrogenative C—H activation, and provided more theoretical basis for future more Mn-catalyzed C—H activation.

Cite this article

Yang Yinuo , Zhang Qi , Shi Jing , Fu Yao . Mechanism Study of Mn(I) Complex-catalyzed Imines and Alkynes Dehydrogenation Coupling Reaction[J]. Acta Chimica Sinica, 2016 , 74(5) : 422 -428 . DOI: 10.6023/A15110736

References

[1] (a) Wencel-Delord, J.; Glorious, F. Nat. Chem. 2013, 5, 369.
(b) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(d) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
(e) Iwai, T.; Sawamura, M. ACS Catal. 2015, 5, 5031.
(f) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int. Ed. 2015, 54, 66.
(g) Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70.
(h) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (廖港, 史炳锋, 化学学报, 2015, 73, 1283.)
(i) Zhou, L.; Lu, W. Acta Chim. Sinica 2015, 73, 1250. (周励宏, 陆文军, 化学学报, 2015, 73, 1250.)
(j) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.)
(k) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275. (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)
(l) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
(m) Zhao, H.; Sun, H.; Wang, L.; Li, X. Acta Chim. Sinica 2015, 73, 1307.
(n) Qiu, H.; Zhang, D.; Liu, S.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C.; Hu, W. Acta Chim. Sinica 2012, 70, 2484. (邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70, 2484.)
[2] (a) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
(c) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(d) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
(e) Sun, C. L.; Li, B. J.; Shi, J. Z. Chem. Rev. 2011, 111, 1293.
(f) Ma, Y.; Li, W.; Yu, B. Acta Chim. Sinica 2013, 71, 541. (马玉勇, 李微, 俞飚, 化学学报, 2013, 71, 541.)
(g) Xu, J.; Chen, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294. (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.)
(h) Zhang, Q.; Lü, Y.; Li, Y.; Xiong, T.; Zhang, Q. Acta Chim. Sinica 2014, 72, 1139. (张茜, 吕允贺, 李燕, 熊涛, 张前, 化学学报, 2014, 72, 1139.)
(i) Cai, H.; Li, D.; Liu, Z.; Wang, G. Acta Chim. Sinica 2013, 71, 717.
[3] Gunay, A.; Theopold, K. H. Chem. Rev. 2010, 110, 1060.
[4] Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew. Chem., Int. Ed. 2007, 46, 6518.
[5] Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.
[6] He, R.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 4950.
[7] Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.
[8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr. Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, 2010.
[9] Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
[10] Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
[11] (a) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
(b) Fukui, K. J. Phys. Chem. 1970, 74, 4161.
[12] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
[13] Fuentealba, P.; Preuss, H.; Stoll, H.; Vonszentpaly, L. Chem. Phys. Lett. 1982, 89, 418.
[14] (a) Lan, Y.; Liu, P.; Newman, S. G.; Lautens, M.; Houk, K. N. Chem. Sci. 2012, 3, 1987.
(b) Yu, H.; Fu, Y. Chem. Eur. J. 2012, 18, 16765.
(c) Ford, D. D.; Nielsen, L. P. C.; Zuend, S. J.; Musgrave, C. B.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 15595.
(d) Suresh, C. H.; Sayyed, F. B. J. Phys. Chem. A 2013, 117, 10455.
(e) Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 12409.
(f) Zhang, S. L.; Shi, L.; Ding, Y. Q. J. Am. Chem. Soc. 2011, 133, 20218.
(g) Proutiere, F.; Aufiero, M.; Schoenebeck, F. J. Am. Chem. Soc. 2012, 134, 606.
[15] (a) Xie, H.; Lin, Z. Organometallics 2014, 33, 892;
(b) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496;
(c) Ariafard, A.; Brookes, N. J.; Stanger, R.; Yates, B. F. Organometallics 2011, 30, 1340.

Outlines

/