Communication

Panchromatic and High-efficient Energy Transfer Assembly Based on Type I Core-shell Quantum Dots

  • Chen Meihua ,
  • Pan Zheng ,
  • Yin Yuefeng ,
  • Liu Jie ,
  • Liu Mengyuan ,
  • Jia Zijun ,
  • Liang Guijie
Expand
  • a Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics and Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053;
    b Department of Chemistry, Emory University, Atlanta, GA 30322, USA

Received date: 2015-12-17

  Online published: 2016-03-22

Supported by

Project supported by the National Natural Science Foundation of China (No. 51502085) and Natural Science Foundation of Hubei Province (No. 2013CFB064).

Abstract

In order to overcome the low energy transfer efficiency of the conventional FRET (Förster resonance energy transfer) system, a novel spectra-matching and distance-controllable CIS@ZnS-SQ FRET assembly has been prepared via ultrasonic self-assembly method, by using the synthesized visible CIS@ZnS type I core-shell quantum dots as energy donor and the near infrared SQ dyes as acceptor. Through controllable synthesis of quantum dots, the absorption and fluorescence performance of FRET system were adjusted by the size of CIS@ZnS, while the distance of energy donor-acceptor and the non-valid charge recombination in the FRET system were controlled by the wide-band shell of quantum dots. The excitons transfer and recombination kinetics in CIS@ZnS-SQ assembly were investigated by the pump-probe femtosecond ultrafast transient absorption measurements, with which results in the FRET-type energy transfer mechanism: CIS*+SQ→CIS+SQ* has been proven and a high energy transfer rate of about 5.0×1010 s-1 has been gained between CIS@ZnS and SQ. The excitons' lifetime and FRET energy transfer efficiency were calculated from the fluorescence decay kinetic curves tested by time-resolved fluorescence measurements. The results show that the energy transfer in CIS@ZnS-SQ depends on the size of CIS@ZnS quantum dots. As the size of CIS@ZnS (mainly refers to the ZnS shell thickness) increases from 2.1±0.4 nm to 2.9±0.4 nm, 4.1±0.3 nm, 5.4±0.5 nm and 7.2±0.5 nm, the fluorescence quantum yield of CIS@ZnS improves from 5.4% to 26%, 33%, 38% and 43.3% as well as the distance between CIS@ZnS and SQ (energy donor and acceptor) increases gradually, which makes the FRET energy transfer efficiency (ηFRET) first rise and then decline. As a result, an optimal ηFRET value of 62.8% was gained in the FRET assembly when the reaction time of ZnS shell was 20 min. This research will have a promising theoretical and practical value for the development of the panchromatic and high-efficiency solar cells.

Cite this article

Chen Meihua , Pan Zheng , Yin Yuefeng , Liu Jie , Liu Mengyuan , Jia Zijun , Liang Guijie . Panchromatic and High-efficient Energy Transfer Assembly Based on Type I Core-shell Quantum Dots[J]. Acta Chimica Sinica, 2016 , 74(4) : 330 -334 . DOI: 10.6023/A15120785

References

[1] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
[2] Grätzel, M. Nature 2001, 414, 338.
[3] Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 1203.
[4] Huang, X. W.; Deng, J. Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2012, 70, 1604. (黄先威, 邓继勇, 许律, 沈平, 赵斌, 谭松庭, 化学学报, 2012, 70, 1604.)
[5] Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sinica 2013, 71, 1149. (寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元, 化学学报, 2013, 71, 1149.)
[6] Dualeh, A.; Moehl, T.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2013, 7, 2292.
[7] Rong, Y. G.; Mei, A. Y.; Liu, L. F.; Li, X.; Han, H. W. Acta Chim. Sinica 2015, 73, 237. (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.)
[8] Ma, Y. Z.; Zheng, L. L.; Zhang, L. P.; Chen, Z. J.; Wang, S. F.; Qu, B.; Xiao, L. X.; Gong, Q. H. Acta Chim. Sinica 2015, 73, 257. (马英壮, 郑灵灵, 张立培, 陈志坚, 王树峰, 曲波, 肖立新, 龚旗煌, 化学学报, 2015, 73, 257.)
[9] Ye, M.; Chen, C.; Zhang, N.; Wen, X.; Guo, W.; Lin, C. Adv. Energy Mater. 2014, 4, 1079.
[10] Zhang, Y.; Yao, Z. B.; Lin, S. W.; Li, J. B.; Lin, H. Acta Chim. Sinica 2015, 73, 219. (张烨, 姚志博, 林仕伟, 李建保, 林红. 化学学报, 2015, 73, 219.)
[11] Koeppe, R.; Bossart, O.; Calzaferri, G.; Sariciftci, N. S. Sol. Energy Mater. Sol. C 2007, 91, 986.
[12] Yum, J. H.; Hardin, B. E.; Moon, S. J.; Etienne, B.; Frank, N.; Mcgehee, M. D.; Grätzel, M.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. 2009, 48, 9277.
[13] Shankar, K.; Feng, X. J.; Grimes, C. A. ACS Nano 2009, 3, 788.
[14] Hardin, B. E.; Hoke, E. T.; Armstrong, P. B.; Yum, J. H.; Comte, P.; Torres, T.; Fréchet, J. M. J.; Nazeeruddin, M. K.; Grätzel, M.; McGehee, M. D. Nat. Photonics 2009, 3, 406.
[15] Lee, E.; Kim, C.; Jang, P. J. Chem.-Eur. J. 2013, 19, 10280.
[16] Andrés, R.; Christian, S. D.; Vito, S.; Guldi, D. M. Adv. Mater. 2011, 23, 4573.
[17] Adhyaksa, G. W. P.; Lee, G. I.; Baek, S. W.; Lee, J. Y.; Kang, J. K. Sci. Rep. 2013, 3, 454.
[18] Choi, H.; Santra, P. K.; Kamat, P. V. ACS Nano 2012, 6, 5718.
[19] Boulesbaa, A.; Huang, Z. Q.; Wu, D.; Lian, T. J. Phys. Chem. C 2010, 114, 962.
[20] Liang, L.; Anshu, P.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176.
[21] Förster, T. Ann. Phys. 1948, 6, 55.
[22] Wu, K. F.; Liang, G. J.; Kong, D. G.; Chen, J. Q.; Chen, Z. Y.; Shan, X.; Mcbride, J. R.; Lian, T. Chem. Sci. 2016, 7, 1238.
[23] Wu, K. F.; Zhu, H. M.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. J. Am. Chem. Soc. 2012, 134, 10337.
[24] Yang, Y.; Liu, Z.; Lian, T. Nano Lett. 2013, 13, 3678.

Outlines

/