A Bio-inspired Nanochannel with Au Nanoparticles
Received date: 2016-02-24
Online published: 2016-06-07
Supported by
Project supported by the National Natural Science Foundation of China (21271016).
Ion channels that exist in the living systems play important roles in maintaining normal physiological processes, and they have attracted great attentions of scientists because of their unique property in many biological activities. Learning from nature become an important source of new materials development. Inspired by natural biological ion channels, artificial polyethylene terephthalate (PET) nanochannel was built by track-etched method and served as one kind of the biomimetic ion channels in this paper. By introducing the idea of asymmetric modification in the PET cylindrical nanochannels, we designed and fabricated an artificial nanochannel system with high and controllable rectification, which ion transport properties can be regulated by Au nanoparticles. PET cylindrical nanochannels are modified with 2-undecyl-1-disulfide ureidoethyl quaternary imidazolinium salt (SUDEI) by electrostatic adsorption, resulting in positively charged on one side of PET cylindrical nanochannels. Since the other side of nanochannels are negatively charged, this membrane exhibits rectified properties with asymmetric charge distribution and geometric structure. The movement of cation presents a priority direction, which is from SUDEI side to the other side, and the opposite direction is suppressed. The ion transportation properties of the nanochannels can be investigated by measuring the current-voltage characteristics, and the diode-like behavior is quantified by the current rectification ratios. By introducing the SUDEI, PET nanochannels have a non-linear ion transport properties, showing better gating performance. In addition, the rectification ratios of this system can be regulated by SUDEI modification time and Au nanoparticles. SUDEI contains active sulfur element, resulting in Au nanoparticles stably bounding to SUDEI with Au—S bond. Therefore, the addition of Au nanoparticles can further increase the nanogating ratio because it can reduce the effective diameter of the cylindrical nanochannels, making the system more asymmetrical. And the ion transport in this system exhibits excellent stability. This system provides a new design idea for further research on more complicated functionalization and smart nanochannel systems.
Key words: ion channel; PET nanochannel; asymmetrical decoration; rectification; nanogating
Li Xiulin , Wang Yang , Zhai Jin . A Bio-inspired Nanochannel with Au Nanoparticles[J]. Acta Chimica Sinica, 2016 , 74(7) : 597 -602 . DOI: 10.6023/A16020098
[1] Rothman, J. E.; Lenard, J. Science 1977, 195, 743.
[2] Hou, X.; Guo, W.; Jiang, L. Chem. Soc. Rev. 2011, 40, 2385.
[3] Tang, C.; Wang, L.; Yun, Y.; Zhang, C.; Liu, B. Acta Chim. Sinica 2011, 69, 343 (in Chinese). (唐橙橙, 王丽华, 贠延滨, 张陈淋, 刘必前, 化学学报, 2011, 69, 343.)
[4] Zhang, L.-X.; Cai, S.-L.; Zheng, Y.-B.; Cao, X.-H.; Li, Y.-Q. Adv. Funct. Mater. 2011, 21, 2103.
[5] Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.
[6] Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.
[7] Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.
[8] Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater 2002, 14, 1857.
[9] Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
[10] Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262 (in Chinese). (车玉萍, 翟锦, 中国科学: 化学, 2015, 45, 262.)
[11] Nasir, S.; Ali, M.; Ensinger, W. Nanotechnology 2012, 23, 225502.
[12] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Small 2009, 5, 1287.
[13] Alcaraz, A.; Ramirez, P.; Garcia-Gimenez, E.; López, M. L.; Andrio, A.; Aguilella, V. M. J. Phys. Chem. B 2006, 110, 21205.
[14] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Nano Lett. 2009, 9, 2788.
[15] Ali, M.; Ramirez, P.; Mafe, S.; Neumann, R.; Ensinger, W. ACS Nano 2009, 3, 603.
[16] Zhang, M. H.; Hou, X.; Wang, J.; Tian, Y.; Xia, F.; Zhai, J.; Jiang, L. Adv. Mater. 2012, 24, 2424.
[17] Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger W. Adv. Funct. Mater. 2012, 22, 390.
[18] Zhang, Q.; Liu, Z.; Hou, X.; Fan, X.; Zhai, J.; Jiang, L. Chem. Commun. 2012, 48, 5901.
[19] Meng, Z. Y.; Jiang, C.; Li, X.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.
[20] Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.
[21] Han, C.; Su, H.; Sun, Z.; Wen, L.; Tian, D.; Xu, K.; Hu, J.; Wang, A.; Li, H.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.
[22] Xu, Y.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. Adv. Mater. 2015, 27, 1851.
[23] Xu, Y.; Zhang, M.; Tian, T.; Shang, Y.; Meng, Z.; Jiang, J.; Zhai, J.; Wang, Y. NPG Asia Mater. 2015, 7, 1.
[24] Guo, W.; Jiang, L. Sci. Sin. Chim. 2011, 41, 1257 (in Chinese). (郭维, 江雷, 中国科学: 化学, 2011, 41, 1257. )
[25] Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.
[26] Gao, L.; Li, P.; Zhang, Y.; Xiao, K.; Ma, J.; Xie, G.; Hou, G.; Zhang, Z.; Wen, L.; Jiang, L. Small 2014, 11, 543.
[27] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.
[28] Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.
[29] Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
[30] Chakarvarti, S. K. Radiat. Meas. 2009, 44, 1085.
[31] Apel, P. Radiat. Meas. 2001, 34, 559.
[32] Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. J. Am. Chem. Soc. 2004, 126, 10850.
[33] Tahir, M. N.; Ali, M.; Andre, R.; Müller, W. E. G.; Schröder, H.-C.; Tremel, W.; Ensinger, W. Chem. Commun. (Camb). 2013, 49, 2210.
[34] Kalman, E. B.; Vlassiouk, I.; Siwy, Z. S. Adv. Mater. 2008, 20, 293.
/
| 〈 |
|
〉 |