Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene
Received date: 2016-03-04
Online published: 2016-06-07
Supported by
Project supported by The National Natural Science Foundation of China (Grant 21576290, 21106182) and China National Petroleum Corp. (2012B-2805).
We applied silica hollow microspheres with through holes in the shell as supports to prepare Pd-based supported catalyst (Pd/SHMs) for heterogeneous catalytic hydrogenation of polystyrene (PS) and also systematically studied the adsorption and reaction behavior of PS molecules over Pd/SHMs. The dynamic adsorption and reaction models of PS molecules under different temperatures have been established and the partially hydrogenated products were also comprehensively analyzed. The result shows that both the adsorption capacity and saturation time are increased as the temperature increasing and this hydrogenation reaction is confirmed to be a first-order reaction and the activation energy is calculated to be 58.3 kJ·mol-1. After separating and purifying three samples with different hydrogenation degrees, we further analyzed the partially hydrogenated products and the results show that they are all actually comprised of two kinds of substances with different properties, one with high hydrogenation conversion rate (ca. 85%) and the other with low hydrogenation ratio (ca. 25%). It is proved that PS heterogeneous hydrogenation process exists secondary adsorption and competitive adsorption phenomenon, and obeys the Blocky mechanism. This work lays the foundation for PS adsorption and hydrogenation reaction and is also favorable for the understanding of the adsorption and catalytic process for other unsaturated polymers over heterogeneous catalysts.
Key words: hydrogenation; adsorption; kinetics; supported catalyst; unsaturated polymer
Yuan Pei , Chen Jian , Pan Deng , Bao Xiaojun . Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene[J]. Acta Chimica Sinica, 2016 , 74(7) : 603 -611 . DOI: 10.6023/A16030117
[1] Singha, N. K.; Bhattacharjee, S.; Sivaram, S. Rubber Chem. Technol. 1997, 70, 311.
[2] Xu, Z. D.; Hadjichristidis, N.; Carella, J. M.; Fetters, L. J. Macromolecules 1983, 16, 925.
[3] Dondos, A.; Staikos, G. Colloid Polym. Sci. 1995, 273, 626.
[4] Garcia Escribiano, P.; Canovas, M. J.; Ojeda, M. C.; Del Rio, C.; Sanchez, F.; Acosta, J. L. Polym. Int. 2011, 60, 493.
[5] Wei, Z. L.; Wu, J. L.; Pan, Q. M.; Rempel, G. L. Macromol. Rapid Commun. 2005, 26, 1768.
[6] Monroy-Barreto, M.; Acosta, J. L.; Del Rio, C.; Ojeda, M. C.; Munoz, M.; Aguilar, J. C. J. Power Sources 2010, 195, 8052.
[7] Jin, M.; Liao, M.; Zhai, J.; Jiang, L. Acta Chim. Sinica 2008, 66, 145. (金美花, 廖明义, 翟锦, 江雷, 化学学报, 2008, 66, 145.)
[8] Xu, L.; Li, W.; Yang, M. Acta Chim. Sinica 2007, 65, 1917. (徐立新,李为立, 杨慕杰, 化学学报, 2007, 65, 1917.)
[9] Zhang, S.; Bai, Y.; Peng, J.; Hu, Y.; Lai, G. Prog. Chem. 2013, 25, 707. (张淑芳, 白赢, 彭家建, 胡应乾, 来国桥, 化学进展, 2013, 25, 707.)
[10] Przybyszewska, M.; Zaborski, M. Composite Interfaces 2009, 16, 131.
[11] Yoon, K.; Kim, K. O.; Schaefer, M.; Yoon, D. Y. Polymer 2012, 53, 2290.
[12] Choi, M.; Kim, Y.; Ha, C. Prog. Polym. Sci. 2008, 33, 581.
[13] Gehlsen, M. D.; Bates, F. S. Macromolecules 1993, 26, 4122.
[14] Huang, H.; Fan, Y.; Tao, S.; Gao, H. New Chem. Mater. 2013, 41, 178. (黄辉, 樊一帆, 陶士英, 高浩其, 化工新型材料, 2013, 41, 178.)
[15] Ness, J. S.; Brodil, J. C.; Bates, F. S.; Hahn, S. F.; Hucul, D. A.; Hillmyer, M. A. Macromolecules 2001, 35, 602.
[16] Dong, L. B.; Turgman-Cohen, S.; Roberts, G. W.; Kiserow, D. J. Ind. Eng. Chem. Res. 2010, 49, 11280.
[17] Xu, D.; Carbonell, R. G.; Kiserow, D. J.; Roberts, G. W. Ind. Eng. Chem. Res. 2003, 42, 3509.
[18] Hucul, D. A.; Hahn, S. F. Adv. Mater. 2000, 12, 1855.
[19] Aylward, F.; Sawistowka, M.; Arthur, F.; Robert, C. B.; Shirley, H. Chem. Rev. 1965, 65, 51.
[20] Parent, J. S.; Mcmanus, N. T.; Rempel, G. L. Ind. Eng. Chem. Res. 1996, 35, 4417.
[21] Martin, P.; Mcmanus, N. T.; Rempel, G. L. J. Mol. Catal. A: Chem. 1997, 126, 115.
[22] Bhattacharjee, S.; Bhowmick, A. K.; Avasthi, B. N. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 471.
[23] Bond, G. C. Heterogeneous Catalysis: Principles and Applications, 2nd Ed., Clarendon Press, Oxford, 1987, p. 120.
[24] Bussard, A.; Dooley, K. M. AIChE J. 2008, 54, 1064.
[25] Zhou, H.; Qiang, M.; Li, J.; Li, Y.; Wang, J. Polym. Mater. Sci. Eng. 2011, 27, 73. (周宏勇, 强明辉, 李军章, 李云庆, 王家喜, 高分子材料科学与工程, 2011, 27, 73.)
[26] Almusaiteer, K. A. Top. Catal. 2012, 55, 498.
[27] Hutchings, G. J. J. Mater. Chem. 2009, 19, 1222.
[28] Fang, F.; Satulovsky, J.; Szleifer, I. Biophys. J. 2005, 89, 1516.
[29] Rosedale, J. H.; Bates, F. S. J. Am. Chem. Soc. 1988, 110, 3542.
[30] Huang, H.; Zhou, J.; Ying, Q.; Tao, S. Mod. Chem. Ind. 2014, 34, 70. (黄辉, 周俊涛, 应勤荣, 陶士英, 现代化工, 2014, 34, 70.)
[31] Cassano, G. A.; Vallés, E. M.; Quinzani, L. M. Polymer 1998, 39, 5573.
[32] Tsukagoshi, T.; Kondo, Y.; Yoshino, N. Colloids Surf. B-Biointerfaces 2007, 54, 101.
[33] Linse, P.; Kallrot, N. Macromolecules 2010, 43, 2054.
[34] Kawaguchi, M.; Anada, S.; Nishikawa, K.; Kurata, N. Macromolecules 1992, 25, 1588.
[35] Kawaguchi, M.; Sakata, Y.; Anada, S.; Kato, T.; Takahashi, A. Langmuir 1994, 10, 538.
[36] Rybicka, J.; Sikorski, A. Macromol. Theory Simul. 2010, 19, 135.
[37] Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1979, 83, 1619.
[38] Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1980, 84, 178.
[39] Doi, Y.; Yano, A.; Soga, K.; Burfield, D. R. Macromolecules 1986, 19, 2409.
[40] Tangthongkul, R.; Prasassarakich, P.; Mcmanus, N. T.; Rempel, G. L. J. Appl. Polym. Sci. 2004, 91, 3259.
[41] Hinchiranan, N.; Charmondusit, K.; Prasassarakich, P.; Rempel, G. L. J. Appl. Polym. Sci. 2006, 100, 4219.
[42] Pan, D.; Shi, G.; Zhang, T.; Yuan, P.; Fan, Y.; Bao, X. J. Mater. Chem. A 2013, 1, 9597.
[43] Dijt, J. C.; Cohen Stuart, M. A.; Fleer, G. J. Macromolecules 1994, 27, 3207.
[44] Kislenko, V. N.; Berlin, A. A.; Kawaguchi, M.; Kato, T. Langmuir 1996, 12, 768.
[45] Tóth, J. Adsorption: Theory, Modeling, and Analysis, Marcel Dekker, New York, 2002, p. 26.
[46] Whittier, R. E. MS Thesis, North Carolina State University, Raleigh, 2004.
/
〈 |
|
〉 |