Research Progress in Flexible Wearable Electronic Sensors
Received date: 2016-04-06
Online published: 2016-06-07
Supported by
Project supported by the 973 Program (No. 2013CB933004), the National Natural Science Foundation of China (Grant Nos. 51203166, 51473172, 51473173, 21203209, 21301180 and 21303218) and the "Strategic Priority Research Program" of Chinese Academy of Sciences (Grant No. XDA09020000).
With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popular electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal transduction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and piezoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and developing stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mechanism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inorganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sensors are presented.
Qian Xin , Su Meng , Li Fengyu , Song Yanlin . Research Progress in Flexible Wearable Electronic Sensors[J]. Acta Chimica Sinica, 2016 , 74(7) : 565 -575 . DOI: 10.6023/A16030156
[1] Maheshwari, V.; Saraf, R. Angew. Chem., Int. Ed. 2008, 47, 7808.
[2] Tee1, B. C.-K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W.-G.; Wang, H. L.; Mei, P.; Chou, H.-H.; Cui, B. X.; Deisseroth, K.; Ng, T. N.; Bao, Z. N. Science 2015, 350, 313.
[3] Velliste, M.; Perel, S.; Spalding, M. C.; Whitford, A. S.; Schwartz, A. B. Nature 2008, 453, 1098.
[4] Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J. Sensor. Actuat. A-Phys. 2010, 158, 183.
[5] Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. A. Nat. Commun. 2014, 5, 5028.
[6] (a) Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.-D.; Lim, H.; Kim, S. Y.; Ko, H. ACS Nano 2014, 8, 4689;
(b) Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. Nat. Commun. 2014, 5, 3002.
[7] Li, R.-Z.; Hu, A.; Zhang, T.; Oakes, K. D. ACS Appl. Mater. Interfaces 2014, 6, 21721.
[8] Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z. L. Nature Photon. 2013, 7, 752.
[9] Koeppe, R.; Bartu, P.; Bauer, S.; Sariciftci, N. S. Adv. Mater. 2009, 21, 3510.
[10] Wang, S.; Lin, L.; Wang, Z. L. Nano Energy 2015, 11, 436.
[11] Choong, C.-L.; Shim, M.-B.; Lee, B.-S.; Jeon, S.; Ko, D.-S.; Kang, T.-H.; Bae, J.; Lee, S. H.; Byun, K.-E.; Im, J.; Jeong, Y. J.; Park, C. E.; Park, J.-J.; Chung, U. I. Adv. Mater. 2014, 26, 3451.
[12] Timsit, R. S. IEEE Trans. Compon. Packag. Technol. 1999, 22, 85.
[13] Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5, 3132.
[14] Zhao, J.; Wang, G. L.; Yang, R.; Lu, X. B.; Cheng, M.; He, C. L.; Xie, G. B.; Meng, J. L.; Shi, D. X.; Zhang, G. Y. ACS Nano 2015, 9, 1622.
[15] Su, M.; F. Li, Y.; Chen, S. R.; Huang, Z. D.; Qin, M.; Li, W. B.; Zhang, X. Y.; Song, Y. L. Adv. Mater. 2016, 28, 1369.
[16] Lee, H.-K.; Chung, J.; Chang, S.-I.; Yoon, E. J. Micromech. Microeng. 2011, 21, 035010.
[17] Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Adv. Mater. 2015, 27, 2440.
[18] Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Nature Nanotechnol. 2011, 6, 788.
[19] Wang, Z. L.; Song, J. Science 2006, 312, 242.
[20] Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R.; Bauer, S.; Lacour, S. P.; Wagner, S. Appl. Phys. Lett. 2006, 89, 073501.
[21] Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A. R.; Xia, J.; Martin, L. W.; Huang, Y.; Rogers, J. A. Nat. Commun. 2014, 5, 4496.
[22] Nour, E. S.; Sandberg, M. O.; Willander, M.; Nur, O. Nano Energy 2014, 9, 221.
[23] Zhang, X.; Hillenbrand, J.; Sessler, G. M. J. Appl. Phys. 2007, 101, 054114.
[24] Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S. K.; Nam, S.; Kyung, K.-U. Adv. Mater. 2014, 26, 4474.
[25] Sun, Y.; Rogers, J. A. J. Mater. Chem. 2007, 17, 832.
[26] Akinwande, D.; Petrone, N.; Hone, J. Nat. Commun. 2014, 5, 5678.
[27] Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Adv. Mater. 2012, 24, 3326.
[28] Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Nature Mater. 2009, 8, 494.
[29] Brosteaux, D.; Axisa, F.; Gonzalez, M.; Vanfleteren, J. IEEE Electron Device Lett. 2007, 28, 552.
[30] Zhang, Y. H.; Wang, S. D.; Li, X. T.; Fan, J. A.; Xu, S.; Song, Y. M.; Choi, K. J.; Yeo, W. H.; Lee, W.; Nazaar, S. N.; Lu, B. W.; Yin, L.; Hwang, K. C.; Rogers, J. A.; Huang, Y. G. Adv. Funct. Mater. 2014, 24, 2028.
[31] Choi, W. M.; Song, J.; Khang, D.-Y.; Jiang, H.; Huang, Y. Y.; Rogers, J. A. Nano Lett. 2007, 7, 1655.
[32] Kim, D.-H.; Song, J.; Choi, W. M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y. Y.; Hwang, K.-C.; Zhang, Y.-W.; Rogers, J. A. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18675.
[33] Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L.; Bajema, M.; Coleman, T.; Gregoire, D.; Larsen, R. J.; Huang, Y. G.; Rogers, J. A. Nat. Commun. 2014, 5, 3266.
[34] Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Adv. Mater. 2016, 28, 1420.
[35] Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.-B.; Jeon, S.; Chung, D.-Y.; Bae, J.; Park, J.; Jeong, U.; Kim, K. Nature Nanotechnol. 2012, 7, 803.
[36] Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.
[37] Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, K.; Kim, H.; Wang, R.; Sinclair, H. S.; Wong, P.; Bao, Z. N. Adv. Mater. 2015, 27, 2656.
[38] Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
[39] Wang, H. L.; Wei, P.; Li, Y. X.; Han, J.; Lee, H. R.; Naab, B. D.; Liu, N.; Wang, C. G.; Adijanto, E.; Tee, B. C. K.; Morishita, S.; Li, Q. C.; Gao, Y. L.; Cui, Y.; Bao, Z. N. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 4776.
[40] Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9966.
[41] Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nature Mater. 2010, 9, 859.
[42] Schwartz, G.; Tee, B. C. K.; Mei, J.; Appleton, A. L.; Kim, D. H.; Wang, H.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.
[43] Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.-A.; Zhu, D. B. Nat. Commun. 2015, 6, 6269.
[44] Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Nature Nanotechnol. 2010, 5, 853.
[45] Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M.; Duan, X. F.; Lee, Y. H. Nature Mater. 2013, 12, 403.
[46] Bai, C. L. Chin. Sci. Bull. 2009, 54, 1941. (白春礼, 科学通报, 2009, 54, 1941.)
[47] Kuang, M. X.; Wang, J. X.; Wang, L. B.; Song, Y. L. Acta Chim. Sinica 2012, 70, 1889. (邝旻翾, 王京霞, 王利彬, 宋延林, 化学学报, 2012, 70, 1889.)
[48] Sun, J. Z.; Kuang, M. X.; Song, Y. L. Prog. Chem. 2015, 27, 979. (孙加振, 邝旻翾, 宋延林, 化学进展, 2015, 27, 979.)
[49] Kuang, M. X.; Wang, L. B.; Song, Y. L. Adv. Mater. 2014, 26, 6950.
[50] Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Adv. Mater. 2013, 25, 6714.
[51] Su, B.; Zhang, C.; Chen, S. R.; Zhang, X. Y.; Chen, L. F.; Wu, Y. C.; Nie, Y. W.; Kan, X. N.; Song, Y. L.; Jiang, L. Adv. Mater. 2014, 26, 2501.
[52] Chen, S. R.; Su, M.; Zhang, C.; Gao, M.; Bao, B.; Yang, Q.; Su, B.; Song, Y. L. Adv. Mater. 2015, 27, 3928.
[53] Han, I. Y.; Kim, S. J. Sens. Actuators A 2008, 141, 52.
[54] Hattori, Y.; Falgout, L.; Lee, W.; Jung, S. Y.; Poon, E.; Lee, J. W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. H.; Su, Y. W.; Wang, X. Q.; Liu, Z. J.; Xia, J.; Cheng, H. Y.; Webb, R. C.; Bonifas, A. P.; Won, P.; Jeong, J. W.; Jang, K. I.; Song, Y. M.; Nardone, B.; Nodzenski, M.; Fan, J. A.; Huang, Y. G.; West, D. P.; Paller, A. S.; Alam, M.; Yeo, W. H.; Rogers, J. A. Adv. Healthcare Mater. 2014, 3, 1597.
[55] Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Adv. Mater. DOI: 10.1002/adma. 201504659.
[56] Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.
[57] Pang, C. F.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B.-H.; Bao, Z. N. Adv. Mater. 2015, 27, 634.
[58] Belanger, M. C.; Marois, Y. J. Biomed. Mater. Res. 2001, 58, 467.
[59] Shan, C. F.; Gong, S. G.; McOwan, P. W. Image Vision Comput. 2009, 27, 803.
[60] Park, J. J.; Hyun, W. J.; Mun, S. C.; Park, Y. T.; Park, O. O. ACS Appl. Mat. Interfaces 2015, 7, 6317.
[61] Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S.-G. ACS Nano 2015, 9, 5929.
[62] Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. Nature Nanotechnol. 2011, 6, 296.
/
〈 |
|
〉 |