Design, Synthesis and Property Study of Bispiropyran Switchable Molecule Based on Acridone
Received date: 2016-04-01
Online published: 2016-06-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21302061, 51373068), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130061120016), China Postdoctoral Science Foundation (Nos. 2013T60318, 2012M510130) and Jilin Province Science & Technology Development Program (No. 20140520084JH).
We designed a bispiropyran switchable molecule based on acridone. Using commercially available 3-bromoanisole and 2-amino-4-methoxybenzoic acid as starting materials, through a six-step synthetic route containing Ullmann biaryl amine condensation, Friedel-Crafts acylation, alkylation of the amine group in the resulting acridone core, regioselective double formylation at the ortho-position to the methoxy groups, demethylation of the two methoxy groups, double condensation with 1,2,3,3-tetramethyl-3H-indolium iodide, the target bispiropyran switchable molecule was successfully synthesized. The UV/Vis spectra and fluorescence spectra of the target dual-switch molecule were studied. It was demonstrated that the bispiropyran molecule had obvious reversible photochromic behavior in dichloromethane solution. For more detail, the spiropyran unit of the designed molecule could be changed to the open-ring form upon UV light irradiation, and the open-ring form of the molecule could be changed to its closed-ring form again when it was placed in the dark. The molecule showed a high stability to acid in MeOH and CH2Cl2, and it had a slow acidichromic behaviour in MeCN. In addition, the molecule showed an acidichromic behaviour in MeCN/H2O solution only when the pH was below 4. However, in the above chromic process, through the UV/Vis spectra we have not found the two states containing single-ring-opened form followed by dual-ring-opened form of the designed molecule. Further study was performed through the computer simulation, and the optimal structures for the dual-ring-closed form (SP-Ac-SP), single-ring-opened form (SP-Ac-MC) and dual-ring-opened form (MC-Ac-MC) of the target molecule in the photochromic process were calculated using B3LYP/6-31g(d) in vacuum. It was found that the SP-Ac-SP was more easily directly transformed to MC-Ac-MC, because the Gibbs free energy change (ΔG1=7.2 kcal/mol) from SP-Ac-SP to SP-Ac-MC was much higher than that (ΔG2=3.5 kcal/mol) from SP-Ac-MC to MC-Ac-MC. The relevant frontier molecular orbitals for the SP-Ac-SP and MC-Ac-MC of the designed molecule calculated using B3LYP/6-31g(d) in vacuum could further explain the detail of the chromic process. Our study will give inspiration to design new type of dual-switch molecules based on conjugate structure.
Key words: spiropyran; acridone; dual-switch molecule; photochromism; acidichromism
Chen Peng , Wang Yuyang , Zhang Yu-Mo , Zhang Sean Xiao-An . Design, Synthesis and Property Study of Bispiropyran Switchable Molecule Based on Acridone[J]. Acta Chimica Sinica, 2016 , 74(8) : 669 -675 . DOI: 10.6023/A16040162
[1] Wang, Z.; Xiao, Y.; Jin, H.; Tan, T.; Wang, S.; Li, X. Acta Chim. Sinica 2014, 72, 731 (in Chinese). (王志强, 肖殷, 金会义, 谈廷风, 王世荣, 李祥高, 化学学报, 2014, 72, 731.)
[2] Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.
[3] Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev. 2012, 41, 1754.
[4] Zhang, G.; Chen, T.; Li, C.; Gong, W.; Aldred, M. P.; Zhu, M. Chin. J. Org. Chem. 2013, 33, 927 (in Chinese). (张国峰, 陈涛, 李冲, 龚文亮, Matthew P. Aldred, 朱明强, 有机化学, 2013, 33, 927.)
[5] Tan, C.; Zhao, Z.; Gao, J.; Lei, J. Acta Chim. Sinica 2012, 70, 1095 (in Chinese). (谭春斌, 赵泽琳, 高峻, 雷景新, 化学学报, 2012, 70, 1095.)
[6] Lukyanov, B.; Lukyanova, M. Chem. Heterocycl. Compd. 2005, 41, 281.
[7] Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741.
[8] Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 4522.
[9] Lee, H. Y.; Diehn, K. K.; Sun, K.; Chen, T.; Raghavan, S. R. J. Am. Chem. Soc. 2011, 133, 8461.
[10] Shao, N.; Jin, J.; Wang, H.; Zheng, J.; Yang, R.; Chan, W.; Abliz, Z. J. Am. Chem. Soc. 2010, 132, 725.
[11] Piantek, M.; Schulze, G.; Koch, M.; Franke, K. J.; Leyssner, F.; Kruger, A.; Navio, C.; Miguel, J.; Bernien, M.; Wolf, M.; Kuch, W.; Tegeder, P.; Pascual, J. I. J. Am. Chem. Soc. 2009, 131, 12729.
[12] Krikun, V. M.; Sadimenko, L. P.; Voloshina, E. N.; Voloshin, N. A. Russ. J. Gen. Chem. 2009, 79, 1191.
[13] Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. Nat. Mater. 2005, 4, 249.
[14] Wang, Y.; Tan, X.; Zhang, Y. M.; Zhu, S.; Zhang, I.; Yu, B.; Wang, K.; Yang, B.; Li, M.; Zou, B.; Zhang, S. X. J. Am. Chem. Soc. 2015, 137, 931.
[15] Lee, C. K.; Davis, D. A.; White, S. R.; Moore, J. S.; Sottos, N. R.; Braun, P. V. J. Am. Chem. Soc. 2010, 132, 16107.
[16] O'Bryan, G.; Wong, B. M.; McElhanon, J. R. ACS Appl. Mater. Interfaces 2010, 2, 1594.
[17] Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Nature 2009, 459, 68.
[18] Raymo, F. M.; Giordani, S.; White, A. J.; Williams, D. J. J. Org. Chem. 2003, 68, 4158.
[19] Giordani, S.; Raymo, F. M. Org. Lett. 2003, 5, 3559.
[20] Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2002, 124, 2004.
[21] Raymo, F. M. Adv. Mater. 2002, 14, 401.
[22] Zhou, Y.; Zhang, D.; Zhang, Y.; Tang, Y.; Zhu, D. J. Org. Chem. 2005, 70, 6164.
[23] Liu, Z. L.; Jiang, L.; Liang, Z.; Gao, Y. H. Tetrahedron Lett. 2005, 46, 885.
[24] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
/
〈 |
|
〉 |