Research Progress of the Metal-based Photonic Crystals
Received date: 2016-04-07
Online published: 2016-08-10
Supported by
Project supported by the Ministry of Science and Technology of the China funding (No. 2016YFA0200803) and the National Natural Science Foundation of China (Nos. 51373183, 91127029, 21074139, 50973117).
Metal-based photonic crystals (PCs), which provide a unique optic-electric properties based on its intrinsic characteristic, is of great significance for the applications in the field of new energy system, such as solar cells, water electrolysis, light emitting diode (LED), etc. This article reviews the research progress of the metal-based PC, including the fabrication method, property investigation and the relative applications. Metal-based PCs are generally fabricated from the building blocks of metal, metal oxide or their composites materials. The fabrication method refers to the bottom up and top down approach. Bottom up approach covers the self-assembly of the metal nanoparticles directly or infiltrating the nanoparticles into the opal template and the subsequent removal of the template toward the metal-based inverse opals. Top down approach refers to the lithography and deposition. The lithography approach includes laser lithography, reaction ion etching, etc. And the deposition method covers physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc. Furthermore, the metal-based PCs demonstrate many excellent properties based on the combination of the light manipulation property of PCs and the intrinsic property of the metal materials. For example, the materials showed surface-enhanced Raman effect, which can provide special optic signal and demonstrate the application in high-sensitive detecting of organic molecules. The combination of Plasmon effect of metal particles and photonic stopband of the PCs can improve the emission intensity, which is significant for the application in high efficient detecting of special material. Otherwise, the stopband of metal-based PCs is beneficial for the improvement of the optic adsorbent property and photoluminescence property. Furthermore, the combination of metal materials and its suitable stopband can amplify its optic-electronic property, sensing property and the optic-catalytic behavior. Finally, the potential applications of metal-based PCs on the new energy system is put forward. Typically, it was used as optic-electric materials in solar cell, water electrolysis, and high efficient LED. This review will provide an important insight for the new energy development and potential utilization.
Key words: photonic crystal; metal-based; preparation; property; application
Wan Lun , Zhang Manbo , Wang Jingxia , Jiang Lei . Research Progress of the Metal-based Photonic Crystals[J]. Acta Chimica Sinica, 2016 , 74(8) : 639 -648 . DOI: 10.6023/A16040172
[1] Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[2] John, S. Phys. Rev. Lett. 1987, 58, 2486.
[3] Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Adv. Mater. 2000, 12, 693.
[4] Ueno, K.; Matsubara, K.; Watanabe, M.; Takeoka, Y. Adv. Mater. 2007, 19, 2807.
[5] Li, H.; Wang, J. X.; Liu, F.; Song, Y. L.; Jiang, L. J. Colloid Interface Sci. 2011, 356, 63.
[6] (a) Aliev, A. E.; Lee, S. B.; Baughman, R. H. Phys. C 2007, 453, 15;
(b) Lu, Y. R.; Yin, P. F.; Mao, J.; Ning, M. J.; Zhou, Y. Z.; Dong, C. K.; Ling, T.; Du, X. W. J. Mater. Chem. A 2015, 3, 18521.
[7] Waterhouse, G. I. N.; Wahab, A. K.; Oufi, M. A.; Jovic, V.; Anjum, D. H.; Waterhouse, D. S.; Idriss, L. ChemSusChem 2011, 4, 1481.
[8] Bayram, S.; Halaoui, L. Part. Part. Syst. Chatact. 2013, 30, 706.
[9] (a) Huang, Y.; Zhou, J. M.; Wang, J. X.; Song, Y. L.; Jiang, L. J. Am. Chem. Soc. 2012, 134, 17053.;
(b) Wang, J. X.; Zhang, Y. J.; Wang, S. T.; Song, Y. L.; Jiang, L. Acc. Chem. Res. 2011, 44, 405.;
(c) Kang, H.; Kim, S. H. Adv. Mater. 2015, 27, 1282;
(d) Guo, Y. G.; Yang, M.; Wu, Q. Acta Chim. Sinica 2013, 71, 693. (郭阳光, 杨穆, 吴强, 化学学报, 2013, 71, 693.)
(e) Zhang, G.; Zhao, Z. Y.; Wang, D. Y. Chem. J. Chin. Univ. 2010, 31, 839. (张刚, 赵志远, 汪大洋, 高等学校化学学报, 2010, 31, 839.)
[10] (a) Hill, M. T.; Gather, M. C. Nat. Photon. 2014, 8, 908;
(b) Liu, X. F.; Sun, C. H.; Jiang, P. Chem. Mater. 2010, 22, 1768;
(c) Manzke, A.; Plettl, A.; Wiedwald, U.; Han, L. Y.; Ziemann, P.; Schreiber, E.; Zener, U.; Vogel, N.; Weiss, C. K.; Landfester, K.; Fauth, K.; Biskupek, J.; Kaiser, U. Chem. Mater. 2012, 24, 1048;
(d) Pang, Z. G.; Zhang, X. P. Nanotechnology 2011, 11, 145303.
[11] Haynes, C. L.; Mcfarlang, A. D.; Smith, M. T.; Hulteen, J. C.; Duyne, R. P. V. J. Phys. Chem. B 2002, 106, 1898.
[12] Jiang, P.; McFarland, M. J. J. Am. Chem. Soc. 2005, 127, 3710.
[13] (a) Qiao, H. Z.; Yang, J. J.; Wang, F.; Yang, Y.; Sun, J. L. Opt. Express 2015, 23, 26617;
(b) Li, Y. F.; Zhang, J. H.; Zhu, S. J. Adv. Mater. 2009, 21, 4731.
[14] Fragala, M. E.; Satriano, C.; Malandrino, G. Chem. Commun. 2009, 839.
[15] Wang, J. J.; Duan, G. T.; Liu, G. Q.; Li, Y.; Xu, L.; Cai, W. P. J. Mater. Chem. C 2015, 3, 5709.
[16] Yang, S. K.; Lapsley, M. I.; Cao, B. Q.; Zhao, C. L.; Zhao, Y. H.; Hao, Q. Z.; Kiraly, B.; Scott, J.; Li, W. Z.; Wang, L; Lei, Y.; Huang, T. J. Adv. Funct. Mater. 2013, 23, 720.
[17] Arpin, K. A.; Losego, M. D.; Braun, P. V. Nano Commun. 2013, 4, 2630.
[18] Li, L.; Li, Y.; Gao, S. Y.; Koshizaki, N. J. Mater. Chem. 2009, 19, 8366.
[19] Li, Y.; Koshizaki, N.; Shimizu, Y.; Li, L.; Gao, S. Y.; Sasaki, T. ACS Appl. Mater. Interfaces 2009, 1, 2580.
[20] Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Nano Lett. 2002, 2, 891.
[21] Fragala, M. E.; Satrianob, C.; Malandrino, G. Commun. Chem. 2009, 7, 839.
[22] Povey, I. M.; Whitehead, D.; Thomas, K.; Pemble, M. E.; Bardosova, M. Appl. Phys. Lett. 2006, 89, 104103
[23] Li, L. M.; Jiao, X. L.; Chen, D. R.; Lotsch, B. V.; Li, C. Chem. Mater. 2015, 27, 7601.
[24] Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, R. P.; Duyne, P. V.; Hupp, J. T. Adv. Mater. 2011, 23, 4449.
[25] Imura, Y.; Kato, M.; Kondo, T.; Kondo, T.; Kawai, T. Langmuir 2010, 26, 11314.
[26] Zeng, H. B.; Xu, X. J.; Bando, Y.; Gautam, U. K.; Zhai, T. Y.; Fang, X. S.; Liu, B. D.; Globerg, D. Adv. Funct. Mater. 2009, 19, 3165.
[27] Labouchere, P.; Chandiran, A. K.; Moehl, T.; Harms, H.; Chavhan, S.; Zaera, R. T.; Nazeeruddin, M. K.; Graetzel, M.; Tetreault, N. Adv. Energy Mater. 2014, 4, 1400217.
[28] Fu, R. R.; Liu, G. Q.; Jia, C.; Li, X. H.; Tang, X.; Duan, G. T.; Li, Y.; Cai, W. P. Chem. Commun. 2015, 51, 6609.
[29] (a) Dimitrov, A. S.; Nagayama, K. Langmuir 1996, 12, 1303;
(b) Watanabe, S.; Mino, Y.; Ichikawa, Y.; Miyahara, M. T. Langmuir 2012, 28, 12982.
[30] Dai, Z. F.; Dai, H.; Zhou, Y.; Liu, D. L.; Duan, G. T.; Cai, W. P.; Li, Y. Adv. Mater. Interface 2015, 2, 1500167.
[31] (a) Huang, T.; Zhao, Q.; Xiao, J. Y.; Qi, L. M. ACS Nano 2010, 4, 4707;
(b) Li, Y.; Qi. L. M. Acta Chim. Sinica 2015, 73, 869. (李扬, 齐利民, 化学学报, 2015, 73, 869.)
[32] Zheng, X. L.; Qin, W. J.; Ling, T.; Pan, C. F.; Du, X. W. Adv. Mater. Inter. 2015, 2, 1400464.
[33] (a) Wang, Y. Z.; Wei, C.; Cong, H. L.; Yang, Q.; Wu, Y. C.; Su, B.; Zhao, Y. S.; Wang, J. X.; Jiang, L. ACS Appl. Mater. Interface 2016, 8, 4985;
(b) Wang, T.; Chen, S. R.; Cui, L. Y.; Cai, J. H.; Jin, F.; Zheng, Y. M.; Wang, J. X.; Song, Y. L.; Jiang, L. Chem. Commun. 2015, 51, 1367.
[34] (a) Zhao, W. T.; Disalvo, F. J. Chem. Commun. 2015, 51, 4876;
(b) Orilall, M. C.; Abrams, N. M.; Lee, J.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2008, 8882.
[35] Sun, F. Q.; Cai, W. P.; Li, Y.; Cao, B. Q; Lei, Y.; Zhang, L. D. Adv. Funct. Mater. 2004, 14, 283.
[36] Xia, L.; Xu, L.; Song, J.; Xu, R.; Liu, D. L.; Dong, B.; Song, H. W. Sci. Rep. 2015, 5, 10838.
[37] Sun, F. Q.; Yu, J. C.; Wang, X. C. Chem. Mater. 2006, 18, 3774.
[38] Gomez, F. G.; Ibisate, M.; Golmayo, D.; Palomares, F. J.; Herrera, M.; Hernansez, J.; Molina, S. I.; Blanco, A.; Lopez, C. Adv. Mater. 2011, 23, 5219.
[39] Duan, G. T.; Lv, F. J.; Cai, W. P.; Luo, Y. Y.; Li, Y.; Liu, G. Q. Langmuir 2010, 26, 6295.
[40] Li, C.; Zhu, X. T.; Zhang, H. F.; Zhu, Z. Z.; Liu, B.; Cheng, C. W. Adv. Mater. Interface 2015, 2, 1500428.
[41] Gao, R.; Hu, L. F.; Chen, M.; Wu, L. M. Small 2014, 15, 3038.
[42] Liu, J. Y.; Zhang, G.; Wang, J. J.; Cho, J.; Pikul, J. H.; Epstein, E. S.; Huang, X. J.; Liu, J. H.; King, W. P.; Braun, P. V. Adv. Mater. 2014, 26, 7096.
[43] Cheng, C. W.; Karuturi, S. K.; Liu, L. J.; Liu, J. J.; Li, H. X.; Su, L. T.; Tok, A. L. Y.; Fan, G. J. Q. Small 2012, 8, 37.
[44] Duan, G. T.; Lv, F. J.; Liu, G. Q. Langmuir 2010, 26, 6295.
[45] (a) Sun, T. T.; Zhang, C. W.; Chen, J. F.; Yan, Y. S.; Zakhidov, A. A.; Baughman, R. H.; Xu, L. B. J. Mater. Chem. A 2015, 3, 11367;
(b) Han, G. Z.; Zhu, S.; Wu, S. R.; Pang, F. F. Acta Chim. Sinica 2012, 70, 1827. (韩国志, 朱沈, 吴生蓉, 庞峰飞, 化学学报, 2012, 70, 1827.)
[46] Ibbotson, L. A.; Demetriadou, A.; Croxall, S. Hess, O.; Baumberg, J. J. Sci. Rep. 2015, 5, 8313.
[47] Zeng, H. B.; Xu, X. J.; Golberg, D. T. Adv. Funct. Mater. 2009, 19, 3165.
[48] Garcia, P. D.; Blanco, A.; Shavel, A.; Gaponik, N.; Eychmuller, A.; Gonzalez, B. R.; Lopez, C. Adv. Mater. 2006, 18, 2768.
[49] Li, C. L.; Dag, O.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, O. T.; Yamauchi, Y. Nat. Commun. 2015, 6, 6608.
[50] (a) Zhang, H. H.; Liu, M.; Zhou, F.; Liu, D. L.; Liu, G. Q.; Duan, G. T.; Cai, W. P.; Li, Y. Small 2015, 11, 844;
(b) Li, C. L.; Dag, O.; Yamauchi, Y. Nat. Commun. 2015, 6, 6608.
[51] Wang, F. Ph.D. Dissertation, Jinan University, Guangzhou, 2015. (王芳, 博士论文, 暨南大学, 广州, 2015.)
[52] Shao, B.; Yang, Z. W.; Wang, Y. D.; Li, J.; Yang, J. Z.; Qiu, J. B.; Song, Z. G. ACS Appl. Mater. Inter. 2015, 7, 25211.
[53] (a) Xu, S.; Xu, W.; Wang, Y. F.; Zhang, S.; Zhu, Y. S.; Tao, L.; Xia, L.; Zhou, P. W.; Song, H. W. Nanoscale 2014, 6, 5859;
(b) Song, H. W. Chin. J. Lumin. 2013, 34, 1. (宋宏伟, 发光学报, 2013, 34, 1.)
(c) Yin, Z.; Li, H.; Xu, W.; Cui, S. B.; Zhou, D. L.; Chen, X.; Zhu, Y. S.; Qin, G. S.; Song, H. W. Adv. Mater. 2016, 28, 2518.
[54] Warren, S. C.; Perkins, M. R.; Adams, A. M.; Kamperman, M.; Burns, A. A.; Arora, H.; Herz, E.; Suteewong, T.; Sai, H.; Li, Z. H.; Werner, J.; Song, J.; Zwanziger, U. W.; Zwanziger, J. W.; Gratzel, M.; DiSalvo, F. J.; Wiesner, U. Nat. Mater. 2012, 11, 460.
[55] Zhu, R.; McLachlan, M.; Reyntjens, S.; Tariq, F.; Ryan, M. P.; McComb, D. W. Nanoscale 2009, 1, 355.
[56] Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. ACS Nano 2014, 8, 5249.
[57] Sun, Y.; Zhang, Z. X.; Shen, Y. H. Nanoscale 2015, 7, 13974.
[58] Ma, M.; Kim, J. K.; Zhang, K.; Shi, X. J.; Kim, S. J.; Moom, J. H.; park, H. J. Chem. Mater. 2014, 26, 5592.
[59] Liu, Q. H.; He, J. F.; Yao, T.; Su, Z. H.; Cheng, W. R.; He, S.; Xie, Y.; Peng, Y. H.; Cheng, H.; Sun, Y. F.; Jiang, Y.; Hu, F. C.; Xie, Z.; Yan, W. S.; Pan, Z. Y.; Wu, Z. Y.; Wei, S. Q. Nat. Commun. 2014, 5, 5122.
[60] Chen, K.; Tuysuz, H. Angew. Chem., Int. Ed. 2015, 54, 13806.
[61] Sun, F. Q.; Cai, W. P.; Li, Y.; Jia, L. C.; Lu, F. Adv. Mater. 2005, 17, 2872.
[62] (a) Qin, M. M.; Li, X.; Zheng, Y. P.; Zhang, Y.; Li, C. Y. Acta Chim. Sinica 2015, 73, 1161. (秦咪咪, 李昕, 郑一平, 张焱, 李从举, 化学学报, 2015, 73, 1161.)
(b) Li, J. L.; Liu, Q. J.; Chen, H. H.; Wei, H. M.; Gu, Z. Z. Acta Chim. Sinica 2006, 64, 1489. (李建林, 刘全俊, 陈海华, 魏红梅, 顾忠泽, 陆祖宏, 谢笔钧, 化学学报, 2006, 64, 1489.)
(c) Wu, Y. N.; Li, F. T.; Zhu, W.; Cui, J. C.; Tao, C. A.; Lin, C. X.; Hannam, P. M.; Li, G. T. Angew. Chem., Int. Ed. 2011, 50, 12518.
[63] (a) Xu, S. P.; Sun, F. Q.; Yang, S. M.; Pan, Z. Z.; Long, J. F.; Gu, F. L. Sci. Rep. 2015, 5, 8939;
(b) Zhang, H. W.; Duan, G. T.; Liu, G. Q.; Li, Y.; Xu, X. X.; Dai, Z. F.; Wang, J. J.; Cai, W. P. Nanoscale 2013, 5, 2460.
[64] Li, L.; Steiner, U.; Mahajan, S. J. Mater. Chem. 2010, 20, 7131.
[65] Puzzo, D. P.; Arsenault, A. C.; Manners, I.; Ozin, G. A. Angew. Chem., Int. Ed. 2009, 48, 943.
[66] (a) Wu, J.; Wang, A. J.; Chen, S. L.; Yuan, G. M.; Wang, X. D.; Zhang, L. J. Inorg. Mater. 2013, 28, 283. (吴俊, 王爱军, 陈胜利, 袁桂梅, 王晓东, 张琳, 无机化学学报, 2013, 28, 283.)
(b) Parlett, C. M. A.; Isaacs, M. A.; Beaumont, S. K.; Bingham, L. M.; Hondow, N. S.; Wilson, K.; Lee, A. F. S. Nat. Mater. 2015, 7, 1372.
[67] Waterhouse, G. I. N.; Chen, W. T.; Chan, A.; Jin, H. S.; Waterhouse, D. S.; Cowie, B. C. C. J. Phys. Chem. C 2015, 119, 6647.
[68] Collins, G.; Blomker, M.; Osiak, M.; Holmes, J. D.; Bredol, M.; Dwyer, C. O. Chem. Mater. 2013, 25, 4312.
[69] Lin, T. G.; Hsu, Y. K.; Chen, S. Y.; Chen, L. C.; Chen, K. H. J. Mater. Chem. 2010, 20, 10600.
[70] Wu, M.; Deng, Z.; Su, B. L. ChemSusChem. 2011, 4, 1481.
[71] Zhang, L. W.; Baumanis, C.; Robben, L.; Kandiel, T.; Bahnemann, D. Small 2011, 7, 2714.
[72] Li, P. F.; Liu, B. A.; Ni, Y. Z.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Adv. Mater. 2015, 27, 4585.
[73] (a) Zhang, H. G.; Shi, T.; Wetzel, D. J.; Nuzzo, R. G.; Braun, P. V. Adv. Mater. 2016, 28, 742;
(b) Glazer, M. P. B.; Cho, J.; Almer, J.; Okasinski, J.; Braun, P. V.; Dunand, D. C. Adv. Energy Mater. 2015, 10, 1500466.
[74] Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Nat. Commun. 2015, 6, 6240.
[75] Su, L. T.; Karuturi, S. K.; Luo, J. S.; Liu, L. J.; Liu, X. F.; Guo, J.; Sum, T. C.; Deng, R.; Fan, H. J.; Liu, X. G.; Tok, A. L. Y. Adv. Mater. 2013, 25, 1603.
[76] Li, Z. G.; Gu, Y.; Li, Y. P.; Feng, S. S.; Yang, Z. R.; Zhang, Y. H.; Zeng, H. B. Adv. Opt. Mater. 2015, 3, 931.
[77] Park, Y.; Lee, J. W.; Ha, S. J.; Moon, J. H. Nanoscale 2014, 6, 3105.
[78] Lee, J. W.; Lee, J.; Kim, C.; Cho, C. Y.; Moon, J. H. Sci. Rep. 2014, 4, 6804.
[79] Ling, T.; Kulinich, S. A.; Zhu, Z. L.; Qiao, S. Z.; Du, X. W. Adv. Funct. Mater. 2014, 24, 707.
[80] Shi, X. J.; Zhang, K.; Shin, K.; Moon, J. H.; Lee, T. W.; Park, J. H. Phys. Chem. Chem. Phys. 2013, 15, 11717.
[81] Huang, Y. J.; Lai, C. H.; Wu, P. W.; Chen, L. Y. J. Electrochem. Soc. 2010, 157, 18.
[82] Zhang, L. W.; Lin, C. Y.; Valev, V. K.; Reisner, E.; Steiner, U.; Baumberg, J. J. Small 2014, 10, 3970.
[83] Nelson, E. C.; Dias, N. L.; Bassett, K. P.; Dunham, S. N.; Verma, V.; Miyake, M.; Wiltzius, P.; Rogers, J. A.; Coleman, J. J.; Li, X. L.; Braun, P. V. Nat. Mater. 2011, 10, 676.
[84] Ng, W. N.; Leung, C. H.; Lai, P. T.; Choi, H. W. Nanotechnology 2008, 19, 255302.
/
〈 |
|
〉 |