Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study
Received date: 2016-05-03
Online published: 2016-08-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 11334004, 11174133, 81421091) and the National Basic Research Program of China (No. 2013CB834100).
Air pollution is a common phenomenon in developing countries, and pollutants are suggested to be essential reasons to produce various diseases, such as cancers, neuro-degenerative diseases and so on. In present work, the effects of sulfur dioxide on the dissociation of Aβ17~42 peptides from core region of Aβ fibril were studied with umbrella sampling method. It is found that the free energy penalty related to the dissociation processes would decrease for larger concentrations of sulfur dioxide. The detailed interactions between peptides and sulfur dioxide are analyzed based on contact statistics. It is suggested that the destabilization of the Aβ fibril is realized by the binding of sulfur dioxide with the peptide backbone as well as the side chains of charged residues, which results in the decrease of hydrophobic interaction and blockage of the electrostatic interactions between charged residues. Furthermore, the positive contribution of such a marginal destabilization on the growth of fibril is also discussed with a nonlinear master equation, which is consistent with the medical knowledge. Through these computations, we disclose the characteristics of the interactions between air pollutants and protein molecules. We expect that these results could help to assess the effect of air pollutants on human health.
Kang Wenbin , Xia Yun , Wang Jun , Wang Wei . Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study[J]. Acta Chimica Sinica, 2016 , 74(8) : 694 -702 . DOI: 10.6023/A16050216
[1] Dominici, F.; Greenstone, M.; Sunstein, C. Science 2014, 344, 257.
[2] Wang, Y.; Hu, M. Acta Chim. Sinica 2016, 74, 356 (in Chinese). (王玉珏, 胡敏, 化学学报, 2016, 74, 356.)
[3] Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658 (in Chinese). (郭松, 胡敏, 郭庆丰, 尚冬杰, 化学学报, 2014, 72, 658.)
[4] Guo, S.; Hu, M.; Shang, D.; Guo, Q. Acta Chim. Sinica 2014, 72, 145 (in Chinese). (郭松, 胡敏, 尚冬杰, 郭庆丰, 化学学报, 2014, 72, 145.)
[5] Li, J.; Meng, Z. Asian J. Ecotoxicol. 2012, 7, 133 (in Chinese). (李君灵, 孟紫强, 生态毒理学报, 2012, 7, 133.)
[6] Yao, G.; Sang, N. Chin. J. Appl. Environ. Biol. 2015, 21, 372 (in Chinese). (姚高毅, 桑楠, 应用与环境生物学报, 2015, 21, 372.)
[7] Yu, F.; Li, D.; Xie, M. Ecol. Sci. 2016, 35, 195 (in Chinese). (俞发荣, 李登楼, 谢明仁, 生态科学, 2016, 35, 195.)
[8] Ma, Y.; Wang, J. Chin. J. Publ. Health 2011, 27, 800 (in Chinese). (马艳琴, 王俊东, 中国公共卫生, 2011, 27, 800).
[9] Wu, Y.; Meng, Q.; Wei, D.; Bai, J. Chin. Bull. Life Sci. 2011, 23, 784 (in Chinese). (吴远双, 孟庆雄, 魏大巧, 白洁, 生命科学, 2011, 23, 784.)
[10] Zhao, D.; Tang, W.; Wang, W. J. Int. Neurology and Neurosurgery 2014, 41, 363 (in Chinese). (赵典, 唐伟, 王威, 国际神经病学神经外科学杂志, 2014, 41, 363.)
[11] Zuo, G. e-Sci. Technol. & Appl. 2011, 2, 63 (in Chinese). (左光宏, 科研信息化技术与应用, 2011, 2, 63.)
[12] Du, J.; Ge, C. Chin. Sci. Bull. 2015, 60, 2977 (in Chinese). (杜江锋, 葛翠翠, 科学通报, 2015, 60, 2977.)
[13] Wang, G.; Wang, P. Sci. Technol. Rev. 2014, 32, 72 (in Chinese). (王庚辰, 王普才, 科技导报, 2014, 32, 72.)
[14] Yang, W.; Bai, Z.; Zhou, X. J. Environ. Health 2015, 32, 753 (in Chinese). (杨伟, 白志鹏, 周晓华, 环境与健康杂志, 2015, 32, 753.)
[15] Li, J.; Meng, Z. Nitric Oxide 2009, 20, 166.
[16] Wang, X.; Jin, H.; Tang, C. Eur. J. Pharmacol. 2011, 670, 1.
[17] Liu, D.; Huang, Y.; Bu, D. Cell Death Dis. 2014, 5, e1251.
[18] Huang, Y.; Shen, Z.; Chen, Q. Sci. Rep. 2016, 6, 19503.
[19] Duff, K.; Eckman, C.; Zehr, C. Nature 1996, 383, 710.
[20] Cook, D.; Forman, M.; Sung, J. Nat. Med. 1997, 3, 1021.
[21] Knowles, T.; Waudby, C.; Devlin, G. Science 2009, 326, 1533.
[22] Bloom, G. JAMA Neurology 2014, 71, 505.
[23] Xi, W.; Li, W.; Wang, W. J. Phys. Chem. B 2012, 116, 7398.
[24] Xi, W.; Li, W.; Wang, W. Chin. Phys. Lett. 2012, 29, 088702.
[25] Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814.
[26] Lührs, T.; Ritter, C.; Adrian, M. Proc. Natl. Acad. Sci. 2005, 102, 17342.
[27] Ribeiro, M. J. Phys. Chem. B 2006, 110, 8789.
[28] Moin, S.; Lim, L.; Hofer, T. Inorg. Chem. 2011, 50, 3379.
[29] Berendsen, H.; Postma, J.; Gunsteren, W. Intermolecular Forces, Springer Netherlands, 1981, pp. 331~342.
[30] Ketko, M.; Kamath, G.; Potoff, J. J. Phys. Chem. B 2011, 115, 4949.
[31] Li, Z.; Guo, X.; Wang, H. Acta Phys.-Chim. Sinica 2009, 25, 6 (in Chinese). (李振泉, 郭新利, 王红艳, 物理化学学报, 2009, 25, 6.)
[32] He, Z.; Zhou, J. Acta Chim. Sinica 2011, 69, 2901 (in Chinese). (贺仲金, 周健, 化学学报, 2011, 69, 2901.)
[33] Izrailev, S.; Stepaniants, S.; Isralewitz, B. Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin Heidelberg, 1999, pp. 39~65.
[34] Park, S.; Khalili-Araghi, F.; Tajkhorshid, E. J. Chem. Phys. 2003, 119, 3559.
[35] Justin, A.; David, R. J. Phys. Chem. B 2010, 114, 1652.
[36] Park, S.; Schulten, K. J. Chem. Phys. 2004, 120, 5946.
[37] Patey, G.; Valleau, J. Chem. Phys. Lett. 1973, 21, 297.
[38] Torrie, G.; Valleau, J. Chem. Phys. Lett. 1974, 28, 578.
[39] Torrie, G.; Valleau, J. J. Comput. Phys. 1977, 23, 187.
[40] Kumar, S.; Rosenberg, J.; Bouzida, D. J. Comput. Chem. 1992, 13, 1011.
[41] Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B. L.; Grubmuller, H. J. Comput. Chem. 2015, 36, 1990.
[42] Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
[43] Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. J. Chem. Phys. 1995, 103, 8577.
[44] Hess, B.; Bekker, H.; Berendsen, H. J. Comput. Chem. 1997, 18, 1463.
[45] Walton, E.; Lee, S.; Van, V. Biophys. J. 2008, 94, 2621.
[46] Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Franco-Lira, M. J. Alzheimers Dis. 2015, 45, 757.
[47] Calderón-Garcidueñas, L.; Vojdani, A.; Blaurock-Busch, E. J. Alzheimers Dis. 2015, 43, 1039.
[48] Li, P.; Yan, R.; Yu, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2739.
[49] Radic, S.; Nedumpully-Govindan, P.; Chen, R.; Salonen, E.; Brown, J. M.; Ke, P. C.; Ding, F. Nanoscale 2014, 6, 8340.
[50] Truong, L. Ph.D. Dissertation, Oregon State University, Oregon, 2012.
[51] Violi, A.; Venkatnathan, A. J. Chem. Phys. 2006, 125, 054302.
[52] Kim, H.; Shin, Y. J. Am. Chem. Soc. 2010, 132, 2254.
[53] Risom, L.; Møller, P.; Loft, S. Mutat. Res. 2005, 592, 119.
/
| 〈 |
|
〉 |