Density Functional Theory Studies of the Binary Systems[BxAl13-x]- (x=0~13)
Received date: 2016-05-11
Online published: 2016-08-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21273008, 21573001).
In this paper, the global minimum search and structural optimization for the B-Al binary clusters [BxAl13-x]- (x=0~13) are performed using the genetic algorithm (GA) method coupled with density functional theory (DFT). The effects of composition on the atomic structures, electronic properties including the energy gaps and vertical detachment energies of B-Al binary clusters are discussed. The results distinctly reveal a three dimensional (3D) to (quasi-)planar (2D) structural transition as a function of x upon increasing the number of boron atoms. When x is in the range of 0 to 7, the clusters are Al-rich and the B-Al binary systems maintain the 3D structure. Whereas, the binary system trends to be quasi-planar structure, and the critical B:Al ratios for the 2D-3D transition are between x=7 and 8. To study the stability of the [BxAl13-x]- clusters, we defined the relative energy (Erel=E([BxAl13-x]-)-xE(B13-)/13–yE(Al13-)/13), where the cluster with a more negative Erel is more stable. At x=1, Erel is the most negative, indicating the highest stability. In order to further understand the stability of clusters, the vertical detachment energies (VDE) and the HOMO-LUMO energy gaps (EH-L) of [BxAl13-x]- (x=0~13) clusters are also calculated. The results show that the energy decreases with the increasing number of B atoms, indicating a lower stability. The largest EH-L of BAl12- cluster indicates that it is the most stable among all the series of this clusters. Molecular orbitals (MO) of BAl12- cluster are analyzed and the result shows that the electronic shells of 1s2 and 1p6 are virtually unchanged when the central Al atom is replaced by the B atom. It also indicates that the electron shell closing model could be regarded as a simple but valid tool for explaining the structures and stabilities of metal clusters. Chemical bonding analysis by Adaptive Natural Density Partitioning (AdNDP) method for the B13- cluster reveals that it is a π-antiaromatic system with 8 delocalized π-electrons.
Huang Min , Xu Chang , Cheng Longjiu . Density Functional Theory Studies of the Binary Systems[BxAl13-x]- (x=0~13)[J]. Acta Chimica Sinica, 2016 , 74(9) : 758 -763 . DOI: 10.6023/A16050230
[1] Yuan, Y.; Cheng, L.-J. J. Chem. Phys. 2012, 137, 044308.
[2] Kiran, B.; Gopa Kumar, G.; Nguyen, M. T.; Kandalam, A. K.; Jena, P. Inorg. Chem. 2009, 48, 9965.
[3] Aguado, A.; López, J. M. J. Chem. Phys. 2009, 130, 064704.
[4] Zhai, H.-J.; Zhao, Y.-F.; Li, W.-L.; Chen, Q.; Bai, H.; Hu, H.-S.; Piazza, Z. A.; Tian, W.-J.; Lu, H.-G.; Wu, Y.-B. Nat. Chem. 2014, 6, 727.
[5] Li, L.; Xu, C.; Jin, B.-K.; Cheng, L.-J. J. Chem. Phys. 2013, 139, 174310.
[6] Li, L.; Xu, C.; Cheng, L.-J. Comput. Theor. Chem. 2013, 1021, 144.
[7] Deshpande, M.; Kanhere, D.; Vasiliev, I.; Martin, R. M. Phys. Rev. B 2003, 68, 035428.
[8] Wang, L.; Zhao, J.-J.; Wang, Y.-J.; Gong, Z.-Z.; Guo, Y.-X.; Wei, D.-Q. J. At. Mol. Phys. 2007, 24, 559 (in Chinese). (王璐, 赵纪军, 王英杰, 龚自正, 郭永新, 魏冬青, 原子与分子物理学报, 2007, 24, 559.)
[9] Liu, L.-R.; Lei, X.-L.; Chen, H.; Zhu, H.-J. Acta Phys. Sin. 2009, 58, 5355 (in Chinese). (刘立仁, 雷雪玲, 陈杭, 祝恒江, 物理学报, 2009, 58, 5355.)
[10] Lei, X.-L.; Zhu, H.-J.; Wang, X.-M.; Luo, Y.-H. Acta Phys.-Chim. Sin. 2008, 24, 1655 (in Chinese). (雷雪玲, 祝恒江, 王先明, 罗有华, 物理化学学报, 2008, 24, 1655.)
[11] Alexandrova, A. N.; Boldyrev, A. I.; Zhai, H.-J.; Wang, L.-S. Coord. Chem. Rev. 2006, 250, 2811.
[12] Zhai, H.-J.; Alexandrova, A. N.; Birch, K. A.; Boldyrev, A. I.; Wang, L.-S. Angew. Chem., Int. Ed. 2003, 42, 6004.
[13] Popov, I. A.; Popov, V. F.; Bozhenko, K. V.; ?ernušák, I.; Boldyrev, A. I. J. Chem. Phys. 2013, 139, 114307.
[14] Galeev, T. R.; Ivanov, A. S.; Romanescu, C.; Li, W.-L.; Bozhenko, K. V.; Wang, L.-S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 8805.
[15] Kawamata, H.; Negishi, Y.; Nakajima, A.; Kaya, K. Chem. Phys. Lett. 2001, 337, 255.
[16] Zhu, Z. Z.; Bo, T. Solid State Commun. 1998, 108, 891.
[17] Ashman, C.; Khanna, S.; Liu, F.; Jena, P.; Kaplan, T.; Mostoller, M. Phys. Rev. B 1997, 55, 15868.
[18] Burgert, R.; Stokes, S. T.; Bowen, K. H.; Schnöckel, H. J. Am. Chem. Soc. 2006, 128, 7904.
[19] Jung, J.; Kim, J. C.; Han, Y.-K. Phys. Rev. B 2005, 72, 155439.
[20] Li, C.-L.; Duan, H.-M.; Mardan, K. Acta Phys. Sin. 2013, 19, 178 (in Chinese). (李春丽, 段海明, 买力坦·开来木, 物理学报, 2013, 19, 178.)
[21] Bergeron, D.; Roach, P.; Castleman, A.; Jones, N.; Khanna, S. Science 2005, 307, 231.
[22] Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N. Science 2004, 304, 84.
[23] Li, S. F.; Gong, X. G. Phys. Rev. B 2004, 70, 075404.
[24] Zope, R. R.; Baruah, T. Phys. Rev. A 2001, 64, 053202.
[25] Gong, X. G.; Kumar, V. Phys. Rev. Lett. 1993, 70, 2078.
[26] Li, X.; Wang, L.-S. Phys. Rev. B 2002, 65, 153404.
[27] Pal, R.; Cui, L.-F.; Bulusu, S.; Zhai, H.-J.; Wang, L.-S.; Zeng, X. C. J. Chem. Phys. 2008, 128, 024305.
[28] Wang, L.; Zhao, J.-J.; Zhou, Z.; Zhang, S. B.; Chen, Z.-F. J. Comput. Chem. 2009, 30, 2509.
[29] Tang, D.-Y.; Huang, X.-N.; Zou, T.; Jin, C.; Hu, J.-P.; Fu, Q.-C. Acta Phys.-Chim. Sin. 2010, 26, 34 (in Chinese). (唐典勇, 黄雪娜, 邹婷, 金诚, 胡建平, 伏秦超, 物理化学学报2010, 26, 34.)
[30] Tang, D.-Y.; Jin, C.; Zou, T.; Huang, X.-N. Acta Chim. Sinica 2009, 67, 1539 (in Chinese). (唐典勇, 金诚, 邹婷, 黄雪娜, 化学学报, 2009, 67, 1539.)
[31] Lei, X.-L. J. Clust. Sci. 2011, 22, 159.
[32] Tang, X.; L?, H.-F.; Ma, C.-L.; Zhao, J.-J.; Zhang, Q.-Y. Acta Phys. Sin. 2008, 57, 7806 (in Chinese). (唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜, 物理学报 2008, 57, 7806.)
[33] Zhao, J.-J.; Buldum, A.; Han, J.; Lu, J. P. Phys. Rev. Lett. 2000, 85, 1706.
[34] Ran, R.-X.; Fan, X.-L.; Liu, Y.; Yang, Y.-L. Acta Chim. Sinica 2013, 71, 829 (in Chinese). (冉润欣, 范晓丽, 刘燕, 杨永良, 化学学报, 2013, 71, 829.)
[35] Cheng, L.-J. J. Chem. Phys. 2012, 136, 104301.
[36] Li, L.-F.; Cheng, L.-J. J. Chem. Phys. 2013, 138, 094312.
[37] Tian, Z.-M.; Cheng, L.-J. Phys. Chem. Chem. Phys. 2015, 17, 13421.
[38] Zhao, J.-J.; Shi, R.-L.; Sai, L.-W.; Huang, X.-M.; Su, Y. Mol. Simulat. 2016, 42, 809.
[39] Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Gaussian Inc., Wallingford, CT, 2009.
[40] Varetto, U. MOLEKEL,5.4.0.8, Swiss National Supercomputing Centre, Manno, Switzerland, 2009.
[41] Hong, L.; Wang, H.-L.; Cheng, J.-X.; Huang, X.-M.; Sai, L.-W.; Zhao, J.-J. Comput. Theor. Chem. 2012, 993, 36.
[42] Smith, J. C.; Reber, A. C.; Khanna, S. N.; Castleman Jr., A. W. J. Phys. Chem. A 2014, 118, 8485.
[43] Zhang, M.; Zhang, J.; Feng, X.; Zhang, H.; Zhao, L.; Luo, Y.; Cao, W. J. Phys. Chem. A 2013, 117, 13025.
[44] Gu, J.-B.; Yang, X.-D.; Wang, H.-Q.; Li, H.-F. Chinese Phys. B 2012, 21, 043102.
[45] Cheng, L.-J.; Zhang, X.-Z.; Jin, B.-K.; Yang, J.-L. Nanoscale 2014, 6, 12440.
[46] Zhai, H.-J.; Kiran, B.; Li, J.; Wang, L.-S. Nat. Mater. 2003, 2, 827.
[47] Zubarev, D. Y.; Boldyrev, A. I. J. Org. Chem. 2008, 73, 9251.
[48] Zubarev, D. Y.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2008, 10, 5207.
[49] Zubarev, D. Y.; Boldyrev, A. I. J. Phys. Chem. A 2008, 113, 866.
[50] Pick, Š. Collect. Czech. Chem. 1988, 53, 1607.
[51] Figeys, H. Tetrahedron 1970, 26, 5225.
/
〈 |
|
〉 |