Review

Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law

  • Li Tao ,
  • Lu Dan
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012

Received date: 2016-05-20

  Online published: 2016-08-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21174049, 91333103, 21574053).

Abstract

Being an important part of polymer science, the single chain conformation and aggregation structure in polymer solution has been widely studied by many experiential exponential laws. In the review, several kinds of commonly used exponential laws were summarized, and the use in the study of shape characteristics of complex single chain and aggregation was introduced. The aggregation structure and morphology of films can be controlled by precursor solution, so deep understanding to the intrinsic properties of precursor solution is particularly important. Combined with the electron microscope, spectra, etc., the exponential law can be used to further study the single chain, aggregation size and morphology, structure evolution, and the law of the movement process of structure units at all levels in polymer solution, this will lay a theoretical foundation for the molecular designing, functional development and application of polymer materials.

Cite this article

Li Tao , Lu Dan . Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law[J]. Acta Chimica Sinica, 2016 , 74(8) : 649 -656 . DOI: 10.6023/A16050252

References

[1] Wu, Q. Y. Polymer Condensed Matter Physics, Science Press, Beijing, 2012, pp. 32~44. (吴其晔, 高分子凝聚态物理学, 科学出版社, 北京, 2012, pp. 32~44.)
[2] de Gennes, P. E. Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1985.
[3] Wu, Q. Y. China Plastics 2013, 27(1), 1. (吴其晔, 中国塑料, 2013, 27(1), 1.)
[4] Robinson, G.; Ross-Murphy, S. B.; Morris, E R. Carbohydr. Res. 1982, 107, 17.
[5] Teraoka, I. Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, Inc., New York, 2001, pp. 209~221.
[6] Kato, T.; Okamoto, T.; Tokuya, T.; Takahashi, A. Biopolymers 1982, 21, 1623.
[7] Picton, L.; Bataille, G.; Muller, G. Carbohydr. Polym. 2000, 42, 23.
[8] Picton, L.; Merle, L.; Muller, G. Int. J. Polym. Anal. Ch. 1996, 2, 103.
[9] Beaucage, G. Phys. Rev. E 2004, 70, 031401.
[10] Gelade, E. T. F.; Goderis, B.; de Koster, C. G..; Meijerink, N.; van Benthem, R. A. T. M. Macromolecules 2001, 34, 3552.
[11] Scherrenberg, R.; Coussens, B.; Van Vliet, P.; Edouard, G.; Brackman, J.; De Brabander, E. Macromolecules 1998, 31, 456.
[12] Huber, K.; Witte, T.; Hollmann, J.; Keuker-Baumann, S. J. Am. Chem. Soc. 2007, 129, 1089.
[13] Lages, S.; Michels, R.; Huber, K. Macromolecules 2010, 43, 3027.
[14] Carpinti, M.; Ferri, F.; Giglio, M.; Paganini, E.; Perini, U. Phys. Rev. A 1990, 42, 7347.
[15] Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer Laboratory, Berlin, 2007.
[16] Raspaud, E.; Lairez, D.; Adam, M.; Carton, J. P. Macromolecules 1994, 27, 2956.
[17] Peng, S. F.; Wu, C. Macromolecules, 2001, 34, 6795.
[18] Roe, R. J. Methods of X-ray and Neutron Scattering in Polymer Science, Oxford, New York, 2000.
[19] Higgins, J. S.; Benoit, H. C. Polymers and Neutron Scattering, Oxford, New York, 1994.
[20] Perahia, D.; Traiphol, R.; Bunz, U. H. F. J. Chem. Phys. 2002, 117, 1827.
[21] Wang, H.; Zhou, W.; Ho, D. L.; Winey, K. I.; Fischer, J. E.; Glinka, C. J.; Hobbie, E. K. Nano Lett. 2004, 4, 1789.
[22] Knaapila, M.; Garamus, V. M.; Almásy, L.; Pang, J. S.; Forster, M.; Gutacker, A.; Scherf, U.; Monkman, A. P. J. Phys. Chem. B 2008, 112, 16415.
[23] Perahia, D.; Jiao, X. S.; Traiphol. R. J. Polym. Sci. Polom. Phys. 2004, 42, 3165.
[24] Rong, L. X.; Wei, L. H.; Dong, B. Z.; Hong, X. G.; Li, F. M.; Li, Z. C. Chin. Phys. 2003, 12, 771. (荣利霞, 魏柳禾, 董宝中, 洪新国, 李福绵, 李子臣, 中国物理, 2003, 12, 771.)
[25] Auguin, D.; Gostan, T.; Delsuc, M.-A.; Roumestand, C. C. R. Chimie 2004, 7, 265.
[26] Crutchfield, C. A.; Harris, D. J. J. Magn. Reson. 2007, 185, 179.
[27] Auge, S.; Schmit, P.-O.; Crutchfield, C. A.; Islam, M. T.; Harris, D. J.; Durand, E.; Clemancey, M.; Quoineaud, A. A.; Lancelin, J. M.; Prigent, Y.; Taulelle, F.; Delsuc, M. A. J. Phys. Chem. B 2009, 113, 1914.
[28] Chari, K.; Antalek, B.; Minter, J. Phys. Rev. Lett. 1995, 74, 3624.
[29] Wu, Q. Y. Polymer Physics, Higher Education Press, Beijing, 2011, pp. 17~24. (吴其晔, 高分子物理学, 高等教育出版社, 北京, 2011, pp. 17~24.)
[30] Roubroeks, J. P.; Mastromauro, D. I.; Andersson, R.; Christensen, B. E.; Åman, P. Biomacromolecules 2000, 1, 584.
[31] Sato, T.; Norisuye, T.; Fujita, H. Macromolecules 1984, 7, 6.
[32] Li, W.; Cui, S. W.; Wang, Q. Biomacromolecules 2006, 7, 446.
[33] Tao, Y. Z.; Zhang, L. N.; Yan, F.; Wu, X. J. Biomacromolecules 2007, 8, 2321.
[34] Huang, Z. P.; Huang, Y. N.; Li, X. B.; Zhang, L. N. Carbohydr. Polym. 2009, 78, 596.
[35] Li, S.; Huang, Y.; Wang, S.; Xu, X. J.; Zhang, L. N. J. Phys. Chem. B 2014, 118, 668.
[36] Voit, B. I.; Albena, L. Chem. Rev. 2009, 109, 5924.
[37] Mori, H.; Müller, A. H. E.; Simon, P. F. W. In Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications, Vol. 2, Eds.: Matyjaszewski, K.; Gnanou, Y.; Leibler, L., Wiley-VCH, Weinheim, Germany, 2007, p. 973.
[38] Turner, S. R.; Voit, B. I.; Mourey, T. H. Macromolecules 1993, 26, 4617.
[39] Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Fréchet, J. M. J.; Hawker, C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401.
[40] Tomalia, D. A.; Hedstrand, D. M.; Wilson, L. R. In Encyclopedia of Polymers Science, 2nd ed., Wiley, New York, 1990.
[41] Isaacson, J.; Lubensky, T. C. J. Phys. Lett. 1980, 41, 469.
[42] Daoud, M.; Joanny, J. F. J. Phys. (Les Ulis, Fr.), 1981, 42, 1359.
[43] Flory, P. J. Principles of Polymer Chemistry, Cornell University, Press, Ithaca, New York, 1953.
[44] Luca, E. D.; Richards, R. W.; Grillo, I.; King, S. M. J. Polym. Sci. Polom. Phys. 2003, 41, 1352.
[45] Ioan, C. E.; Aberle, T.; Burchard, W. Macromolecules 2000, 33, 5730.
[46] Hanselmann, R.; Burchard, W.; Lemmes, R.; Schwengers, D. Macromol. Chem. Phys. 1995, 196, 2259.
[47] Huang, L.; Zhang, L. L.; Huang, X. N.; Li, T.; Liu, B.; Lu, D. J. Phys. Chem. B. 2014, 118, 791.
[48] Knaapila, M.; Almásy, L.; Garamus, V. M.; Ramosd, M. L.; Justino, L. L. G.; Galbrecht, F.; Preis, E.; Scherf, U.; Burrowsd, H. D.; Monkmanm, A. P. Polymer 2008, 49, 2033.
[49] Papi, M.; Arcovito, G.; de, Spirito. M..; Amiconi, G.; Bellelli, A.; Boumis, G. Appl. Phys. Lett. 2005, 86, 183901.
[50] Li, Y. C, Chen, K. B, Chen, H. L.; Hsu, C. S.; Tsao, C. S.; Chen, J. H.; Chen, S. A. Langmuir 2006, 22, 11009.
[51] Bauer, B. J.; Hobbie, E. K.; Becker, M. L. Macromolecules 2006, 39, 2637.
[52] Callejas-Fernández, J.; Ramos, J.; Forcada, J.; Moncho-Jordá, A. J. Colloid Interface Sci. 2015, 450, 310.
[53] Kanai, S.; Muthukumar, M. J. Chem. Phys. 2007, 127, 25.
[54] Dai, S.; Tam, K. C.; Jenkins, R. D. Macromolecules 2000, 33, 404.
[55] Witten, T. A.; Sander, L. M. Phys. Rev. Lett. 1981, 47, 1400.
[56] Witten, T. A.; Sander, L. M. Phys. Rev. B 1983, 27, 5686.
[57] Meakin, P. Phys. Rev. Lett. 1983, 51, 1119.
[58] Meakin, P. Phys. Rev. A 1990, 41, 2005.
[59] Meakin, P. Adv. Colloid Interface Sci. 1988, 28, 249.
[60] Brown, W. D.; Ball, R. C. J. Phys. A 1985, 18, 517.
[61] Vicsek, T. Fractal Growth Phenomena, World Scientific, London, 1992.
[62] Chen, W. N.; Zhao, Y.; Jiang, Y.; Yan, D. D.; Han, C. C. ChemPhysChem 2004, 5, 1745.
[63] Liu, X. B.; Luo, S. K.; Ye, J.; Wu, C. Macromolecules 2012, 45, 4830.
[64] Hagiwara, T.; Kumagai, H.; Nakamura, K. Biosci. Biotech. Biochem. 1996, 60, 1757.
[65] Lin, W.; Zhou, Y. S.; Zhao, Y.; Zhu, Q. S.; Wu, C. Macromolecules 2002, 35, 7407.
[66] Liao, W.; Zhang, Y. J.; Guan, Y.; Zhu, X. X. Langmuir 2012, 28, 10873.
[67] Burns, J. L.; Yan, Y. D.; Jameson, G. J.; Biggs, S. Langmuir 1997, 13, 6413.
[68] Li, N.; Li, Y. B.; Wang, X. G. Macromolecules 2011, 44, 8598.

Outlines

/