Review

Trivalent Uranium Complex in Small Molecules Activation

  • Yue Guozong ,
  • Gao Rui ,
  • Zhao Pengxiang ,
  • Chu Mingfu ,
  • Shuai Maobing
Expand
  • Institute of Materials, China Academy of Engineering Physics, Mianyang 621908

Received date: 2016-05-26

  Online published: 2016-08-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51573172, 21501156, 21601166) and the Discipline Development Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (No. ZDXKFZ201506).

Abstract

Uranium, one of typical actinide elements, has strong polarizing property. Using 5f orbitals for bonding with ligands, uranium(III) compounds have some unique reactivities including: migratory insertion, σ-bond metathesis and redox activity etc., which provides researchers with good opportunities to obtain organic uranium complexes or materials with unique structures and reactional properties. In the last 20 years, it has been found that trivalent uranium organic complexes exhibit a wide variety of activation towards small molecules. Due to the significant research and potential industrial value, this field has been well developed in recent years. Some research results for small molecules (such as N2, CO, CO2) activation promoted by trivalent uranium complexes were summarized in the paper.

Cite this article

Yue Guozong , Gao Rui , Zhao Pengxiang , Chu Mingfu , Shuai Maobing . Trivalent Uranium Complex in Small Molecules Activation[J]. Acta Chimica Sinica, 2016 , 74(8) : 657 -663 . DOI: 10.6023/A16050260

References

[1] Shi, W. Q.; Zhao, Y. L.; Chai, Z. F. Prog. Chem. 2011, 23, 1478. (石伟群, 赵宇亮, 柴之芳, 化学进展, 2011, 23, 1478.)
[2] Yuan, Y. L.; Shi, W. Q.; Lan, J. H.; Chai, Z. F. Chin. Sci. Bull. 2012, 57, 581. (袁立永, 石伟群, 蓝建慧, 柴之芳, 科学通报, 2012, 57, 581.)
[3] Monreal, M. J.; Diaconescu, P. L. Nat. Chem. 2010, 2, 424.
[4] Jones, C. J. d- and f-Block Chemistry, Polestar Wheatons, Exeter, 2001, p. 86.
[5] Ephritikhine, M. Dalton Trans. 2006, 2501.
[6] Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008, 455, 341.
[7] Liddle, S. P. Angew. Chem., Int. Ed. 2015, 54, 30.
[8] Fortier, S.; Hayton, T. W. Coord. Chem. Rev. 2010, 254, 197.
[9] Altmaier, M.; Gaona, X.; Fanghänel, T. Chem. Rev. 2013, 113, 901.
[10] Loiseau. T.; Mihalcea, I.; Henry, N.; Volkringer, C. Coord. Chem. Rev. 2014, 266267, 69.
[11] Gardner, B. M.; Liddle, S. T. Eur. J. Inorg. Chem. 2013, 3753.
[12] Jones, M. B.; Gaunt, A. J. Chem. Rev. 2013, 113, 1137.
[13] Arnold, P. L.; McMullon, M. W.; Rieb, J.; Kuhn, F. E. Angew. Chem., Int. Ed. 2014, 53, 2.
[14] Karmel, I. S. R.; Fridman, N.; Tamm, M.; Eisen, M. S. J. Am. Chem. Soc. 2014, 136, 17180.
[15] Karmel, I. S. R.; Fridman, N.; Eisen, M. S. Organometallics 2015, 34, 636.
[16] Ossola, F.; Zanella, P.; Ugo, P.; Seeber, R. Inorg. Chim. Acta 1988, 147, 123.
[17] Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem. 1994, 33, 4245.
[18] Morris, D. E.; Re, R. E. D.; Jantunen, K. C.; Castro-Rodriguez, I.; Kiplinger, J. L. Organometallics 2004, 23, 5142.
[19] Haber, F. DE 229126, 1909.
[20] Roussel, P.; Hitchcock, P. B.; Tinker, N.; Scott, P. Chem. Commun. 1996, 17, 2053.
[21] Odom, A. L.; Arnold, P. L.; Cummins, C. C. J. Am. Chem. Soc. 1998, 120, 5836.
[22] Cloke, F. G. N.; Hitchcock, P. B.; J. Am. Chem. Soc. 2002, 124, 9352.
[23] Evans, W. J.; Kozimor, S. A.; Ziller, J. W. J. Am. Chem. Soc. 2003, 125, 14264.
[24] Mansell, S. M.; Kaltsoyannis, N.; Arnold, P. L. J. Am. Chem.Soc. 2011, 133, 9036.
[25] Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692.
[26] Brennan, J. G.; Andersen, R. A.; Robbins, J. L. J. Am. Chem. Soc. 1986, 108, 335.
[27] Parry, J.; Carmona, E.; Coles, S.; Hursthouse, M. J. Am. Chem. Soc. 1995, 117, 2649.
[28] Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242.
[29] Summerscales, O. T.; Cloke, F. G. N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. Science 2006, 311, 829.
[30] Summerscales, O. T.; Cloke, F. G. N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. J. Am. Chem. Soc. 2006, 128, 9602.
[31] Arnold, P. L.; Turner, Z. R.; Bellabarba, R. M.; Tooze, R. P. Chem. Sci. 2011, 2, 77.
[32] Gardner, B. M.; Stewart, J. C.; Davis, A. L.; McMaster, L. W.; Blake, A. J.; Liddle, S. T. Proc. Natl. Acad. Sci. 2012, 109, 9265.
[33] Gibson, D. H. Chem. Rev. 1996, 96, 2063.
[34] Fujita, E. Coord. Chem. Rev. 1999, 185-6, 373.
[35] Keith, D. W. Science 2009, 325, 1654.
[36] Solomon, S.; Plattner, G. K.; Knutti, R.; Friedlingstein, P. Proc. Natl. Acad. Sci. 2009, 106, 1704.
[37] Natrajan, L.; Pecaut, J.; Mazzanti, M. Dalton Trans. 2006, 1002.
[38] Andrews, P. C.; Beck, T.; Forsyth, C. M.; Fraser, B. H.; Junk, P. C.; Massi, M.; Roesky, P. W. Dalton Trans. 2007, 5651.
[39] Castro-Rodriguez, I.; Nakai, H.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Science 2004, 305, 1757.
[40] Lam, O. P.; Bart, S. C.; Kameo, H.; Heinemann, F. W.; Meyer, K. Chem. Commun. 2010, 46, 3137.
[41] Castro, L.; Lam, O. P.; Bart, S. C.; Meyer, K.; Maron, L. Organometallics 2010, 29, 5504.
[42] Schmidt, A. C.; Nizovtsev, A. V.; Scheurer, A.; Heinemann, F. W.; Meyer, K. Chem. Commun. 2012, 48, 8634.
[43] Matson, E. M.; Forrest, W. P.; Fanwick, P. E.; Bart, S. C. J. Am. Chem. Soc. 2011, 133, 4948.
[44] Kahan, R. J.; Cloke, F. G. N.; Roea, S. M.; Niefb, F. New J. Chem. 2015, 39, 7602.
[45] Zhang, S. D.; Ding, Y. Q.; Gu, Z. M.; Wang, X. Y.; Ye, G. A.; Wang, X. L.; Shen, X. H.; Qin, Z.; Zhao, Y. L.; Shi, Q. L.; Li, J. Y. Chemistry Online 2014, 77, 660. (张生栋, 丁有钱, 顾忠茂, 王祥云, 叶国安, 汪小琳, 沈兴海, 秦芝, 赵宇亮, 师全林, 李金英, 化学通报, 2014, 77, 660.)
[46] Xiao, H.; Hu, H. S.; Schwarz, W. H. E.; Li, J. J. Phys. Chem. A 2010, 114, 8837.
[47] Wang, Y. L.; Liu, Z. Y.; Li, Y. X.; Bai, Z. L.; Liu, W.; Wang, Y. X.; Xu, X. M.; Xiao, C. L.; Sheng, D. P.; Diwu, J.; Su, J.; Chai, Z .F.; Albrecht-Schmitt, T. E.; Wang, S. A. J. Am. Chem. Soc. 2015, 137, 6144.
[48] Liu, W. J. Mol. Phys. 2010, 108, 1679.
[49] Hu, S. W.; Wang, X. Y.; Chu, T. W.; Liu, X. Q. J. Phys. Chem. A 2009, 113, 9243.
[50] Zhang, L.; Hou, G. H.; Zi, G. F.; Ding, W. J.; Walter, M. D. J. Am. Chem. Soc. 2016, 138, 5130.
[51] Ding, W. J.; Fang, W. H.; Chai, Z. F.; Wang, D. Q. J. Chem. Theory Comput. 2012, 8, 3605.
[52] Ding, W. J.; Wang, D. Q. Organometallics 2014, 33, 7007.
[53] Wang, D.-Q.; Gunsteren, W. F. V. Prog. Chem. 2011, 23, 1566. (王东琪, Gunsteren W F V., 化学进展, 2011, 23, 1566.)

Outlines

/