Studies on the Synthesis, Micellization and Gelation of Novel Temperature- and pH-Sensitive ABA Triblock Copolymers
Received date: 2016-06-28
Online published: 2016-08-10
Supported by
Project supported by the National Natural Science Foundation of China (20973106), the Fundamental Research Funds for the Central Universities of China (GK201301004), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R33).
Novel ABA triblock copolymers P(DEAEMA-co-MEO2MA-co-HMAM)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-HMAM) with different polymerization degrees which were more hydrophilic were synthesized by ATRP (atom transfer radical polymerization). The composition and structure of the copolymer were characterized by 1H NMR, FT-IR, and gel permeation chromatograph (GPC). The temperature- and pH-sensitivity and micellization of the ABA triblock copolymer have been studied using transmittance, surface tension, fluorescence spectra, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. The effects of temperature and pH on the gelation of the copolymer were studied through the gel state and the process of sol-gel transitions of copolymer induced by temperature at different pHs. The drug release of a drug-loaded gel which informed by the copolymer was tested respectively at different temperatures and pHs in buffer solutions. It was found that the copolymer had a good temperature- and pH-sensitivity, and the copolymer chains can form stable core-shell structure micelles through temperature and pH inducing. The different strength of gel can be induced by pH. In addition, the drug release of the drug-loaded gel was increased with the decrease of temperature and pH values.
Key words: temperature- and pH-sensitivity; micellization; gelation; drug release
Han Yanan , Liu Shouxin , Mao Hongguang , Tian Lei , Ning Wenyan . Studies on the Synthesis, Micellization and Gelation of Novel Temperature- and pH-Sensitive ABA Triblock Copolymers[J]. Acta Chimica Sinica, 2016 , 74(9) : 744 -751 . DOI: 10.6023/A16060302
[1] O'Lenick, T. G.; Jin, N. X.; Woodcock, J. W.; Zhao, B. J. Phys. Chem. 2011, 115, 2870.
[2] Li, Y.; Yang, D.; Adronov, A.; Gao, Y.; Luo, X.; Li, H. Macromolecules 2012, 45, 4698.
[3] Woodcock, J. W.; Jiang, X.; Wright, R. A. E.; Zhao, B. Macromolecules 2011, 44, 5764.
[4] Shim, W. S.; Kim, S. W.; Lee, D. S. Biomacromolecules 2006, 7, 1935.
[5] Sahu, A.; Choi, W.; Tae, G. Chem. Commun. 2012, 48, 5820.
[6] Loh, X. J.; Goh, S. H.; Li, J. Biomacromolecules 2007, 8, 585.
[7] Castelletto, V.; Hamley, I. W. Langmuir 2004, 20, 4306.
[8] Lutz, J. F.; Akdemir, Ö.; Hoth, A. J. Am. Chem. Soc. 2006, 128, 13046.
[9] Lutz, J. F.; Weichenhan, K.; Akdemir, O.; Hoth, A. Macromolecules 2007, 40, 2503.
[10] Zarafshani, Z.; Obata, T.; Lutz, J. F. Biomacromolecules 2010, 11, 2130.
[11] Bütün, V.; Billingham, N. C.; Armes, S. P. Chem. Commun. 1997, 671.
[12] Du, J.; Armes, S. P. Langmuir 2009, 25, 9564.
[13] Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. J. Am. Chem. Soc. 2005, 127, 17982.
[14] Madsen, J.; Armes, S. P.; Bertal, K.; Lomas, H.; MacNeil, S.; Lewis, A. L. Biomacromolecules 2008, 9, 2265.
[15] Madsen, J.; Armes, S. P.; Lewis, A. L. Macromolecules 2006, 39, 7455.
[16] Woodcock, J. W.; Wright, R. A. E.; Jiang, X.; O'Lenick, T. G.; Zhao, B. Soft Matter 2010, 6, 3325.
[17] Vogt, A. P.; Sumerlin, B. S. Soft Matter 2009, 5, 2347.
[18] Zhao, W. J.; Qiao, Z. Y.; Duan, Z. Y.; Wang, H. Acta Chim. Sinica 2016, 74, 234. (赵文静, 乔增莹, 段中余, 王浩, 化学学报, 2016, 74, 234.)
[19] Qi, X. J.; Liu, S. X.; Liu, T.; Dang, L.; Yang, X.; Yu, W. N.; Wang, H. M. Acta Chim. Sinica 2011, 69, 1803. (齐晓君, 刘守信, 刘腾, 党莉, 杨曦, 雨薇娜, 王红梅, 化学学报, 2011, 69, 1803.)
[20] Jiang, X.; Jin, S.; Zhong, Q.; Dadmun, M. D.; Zhao, B. Macromolecules 2009, 42, 8468.
[21] Sun, K. H.; Sohn, Y. S.; Jeong, B. Biomacromolecules 2006, 7, 2871.
[22] Anderson, B. C.; Cox, S. M.; Bloom, P. D.; Sheares, V. V.; Mallapragada, S. K. Macromolecules 2003, 36, 1670.
[23] Determan, M. D.; Guo, L.; Thiyagarajan, P.; Mallapragada, S. K. Langmuir 2006, 22, 1469.
[24] Chang, C.; Wei, H.; Feng, J.; Wang, Z. C.; Wu, X. J.; Wu, D. Q.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Macromolecules 2009, 42, 4838.
[25] Smith, A. E.; Xu, X.; Kirkland-York, S. E.; Savin, D. A.; McCormick, C. L. Macromolecules 2010, 43, 1210.
[26] Shim, W. S.; Yoo, J. S.; Bae, Y. H.; Lee, D. S. Biomacromolecules 2005, 6, 2930.
[27] Qiao, C. D. Polymer Bulletin 2010, (3), 23. (乔从德, 高分子通报, 2010, (3), 23.)
[28] Richardson, R. M.; Pelton, R.; Cosgrove, T.; Zhang, J. Macromolecules 2000, 33, 6269.
[29] Li, X. M.; Wang, Y. Y.; Chen, J. M.; Wang, Y. N.; Ma, J. B.; Wu, G. L. ACS Appl. Mater. Interfaces 2014, 6, 3640.
[30] Wei, H.; Chen, W. Q.; Chang, C.; Cheng, C.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. J. Phys. Chem. C 2008, 112, 2888.
[31] Li, Y.; Rodrigues, J.; Tomás, H. Chem. Soc. Rev. 2012, 41, 2193.
[32] Du, A. W.; Stenzel, M. H. Biomacromolecules 2014, 15, 1097.
/
〈 |
|
〉 |