Theoretical Studies on Photophysical Properties of Isomeric Iridium(Ⅲ) Complexes Ir(ppy)2(acac) Containing Dimesitylboron Moiety
Received date: 2016-06-24
Online published: 2016-08-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21473071, 21173099 and 20973078), the National Basic Research Program of China (973 Program) (No. 2013CB834801) and the Youth Program of National Natural Science Foundation of China (No. 11504130).
The phosphorescent photophysical properties for three Ir(Ⅲ) complexes 1~3 containing dimesitylboryl moiety were investigated by DFT. The electronic structure of the ground and excited state, absorption and emission spectra, the spin-orbital coupling matrix < T1α|HSOC|Sn >, the radiative and non-radiative transition process for complexes 1~3 were calculated by DFT/TD-DFT approach. The effect of dimesitylboryl substitution at different site of Ir(Ⅲ) complex with phenylpyridine and acetylacetone ligand on the phosphorescent radiative and non-radiative process was discussed. The results reveal that the introduction of B(Mes)2 group to the pyridine ring of the phenylpyridine (ppy) ligand can strengthen the interactions between the metal and the acetylacetone (acac) ligand, reduce the structure relaxation of the molecule from the ground state to the excited triplet state, and maintain the structures of octahedral field, which is conducive to restricted non-radiative transition. Moreover the singlet-triplet energy splitting ΔE(S1-T1) is decreased, the intersystem crossing rate and radiative transition rate are increased. In addition, compared with the substitution at the pyridinyl in complex 1, modifying phenyl group with B(Mes)2 group in complex 2 and 3 could induce larger structural changes from S0 to T1 state and enhance the < S0|HSOC|T1 > value, the spin orbit coupling matrix element between S0 and T1 state of 2 and 3 are greater than that of 1, which will induce a larger non-radiative transition rate for 2 and 3. The variety of substitution position of B(Mes)2 group leads to different d-splitting, different spin-orbital coupling effect in the x, y or z direction, induces the changes of zero field splitting energy and the inequality of radiative transition rates in the three substates (namely, krx, kry, and krz), and the largest radiative rates of 1~3 are all located in z substates with values of 2.32×105, 1.20×105, and 5.50×105 s-1, respectively. Therefore, we explained the reason that complex 1 has higher phosphorescence quantum efficiency through modifying the pyridine ring of the ppy ligand rather than the benzene ring.
Ma Mingshuo , Zou Luyi , Li Yan , Ren Aimin , Ding Xiaoli . Theoretical Studies on Photophysical Properties of Isomeric Iridium(Ⅲ) Complexes Ir(ppy)2(acac) Containing Dimesitylboron Moiety[J]. Acta Chimica Sinica, 2016 , 74(9) : 764 -772 . DOI: 10.6023/A16060308
[1] Yersin, H.; Finkenzeller, W. J.; Walter, M. J.; Lupton, J. M.; Djurovich, P. I.; Thompson, M. E.; Tsuboyama, A.; Okada, S.; Ueno, K.; Chi, Y.; Chou, P. T.; Yang, X. H.; Jaiser, F.; Neher, D.; Xiang, H. F.; Lai, S. W.; Lai, P. T.; Che, C. M.; Tanaka, I.; Tokito, S.; Dijken, A. V.; Brunner, K.; Börner, H.; Langeveld B. M. W.; Mak, C. S. K.; Chan, W. K.; Nazeeruddin, M. K.; Klein, C.; Grätzel, M.; Zuppiroli, L.; Berner, D.; Bian, Z. Q.; Huang, C. H. Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, 1st edn, Weinheim, 2008.
[2] Templier, F. OLED Microdisplays: Technology and Applications, Chapter: OLED Theory and Principles, Wiley-VCH, 1st edn, Weinheim, 2014.
[3] Förrest, S. R.; Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E. Nature 1998, 395, 151.
[4] Hudson, Z. M.; Sun, C.; Helander, M. G.; Amarne, H.; Lu, Z. H.; Wang, S. Adv. Funct. Mater. 2010, 20, 3426.
[5] Zhou, G. J.; Ho, C. L.; Wong, W. Y.; Wang, Q.; Ma, D. G.; Wang, L. X.; Lin, Z. Y.; Marder. T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.
[6] Lin, C. H.; Chang, Y. Y.; Hung, J. Y.; Lin, C. Y.; Chi, Y.; Chung, M. W.; Lin, C. L.; Chou, P. T.; Lee, G. H.; Chang, C. H.; Lin, W. C. Angew. Chem., Int. Ed. 2011, 50, 3182.
[7] Kim, J. B.; Han, S. H.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2015, 51, 58.
[8] Wang, F. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2015, 73, 9. (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9.)
[9] Hudson, Z. M.; Sun, C.; Helander, M. G.; Chang, Y. L.; Lu, Z. H.; Wang, S. J. Am. Chem. Soc. 2012, 134, 13930.
[10] Wang, X.; Chang, Y. L.; Lu, J. S.; Zhang, T.; Lu, Z. H.; Wang, S. Adv. Funct. Mater. 2014, 24, 1911.
[11] Lu, J. S.; Ko, S. B.; Walters, N. R.; Kang, Y. J.; Sauriol, F.; Wang, S. Angew. Chem., Int. Ed. 2013, 52, 4544.
[12] Yang, X. L.; Sun, N.; Dang, J. S.; Huang, Z.; Yao, C. L.; Xu, X. B.; Ho, C. L.; Zhou, G. J.; Ma, D. G.; Zhao, X.; Wong, W. Y. J. Mater. Chem. C 2013, 1, 3317.
[13] Tong, G. S.; Che, C. M. Chem.-A Eur. J. 2009, 15, 7225.
[14] Nozaki, K. J. Chin. Chem. Soc. 2006, 53, 101.
[15] Williams, J. A. G. Top. Curr. Chem. 2007, 281, 205.
[16] Siddique, Z. A.; Yamanoto, Y.; Ohno, T.; Nozaki, K. Inorg. Chem. 2003, 42, 6366.
[17] Cao Q.; Wang J.; Tian, Z. S.; Xie Z. F. J. Comput. Chem. 2012, 33, 1038.
[18] Fraga, S.; Axena, K. M. S.; Karwowski, J., Physical Sciences Data. Amsterdam: Handbook of Atomic Data, Elsevier, Amsterdam, 1976, p. 551.
[19] Tong, G. S. M.; Chow, P. K.; To, W. P.; Kwok, W. M.; Che, C. M. Chem.-Eur. J. 2014, 20, 6433.
[20] Li, Y.; Zou, L. Y.; Ren, A. M.; Ma, M. S.; Fan, J. X. Chem.-Eur. J. 2014, 20, 4671.
[21] Wang, L.; Wu, Y.; Shan, G. G.; Geng, Y.; Zhang, J. Z.; Wang, D. M.; Yang, G. C.; Su, Z. M. J. Mater. Chem. C 2014, 2, 2859.
[22] Wu, Y.; Shan, G. G.; Li, H. B.; Wu, S. X.; Ren, X. Y.; Geng, Y.; Su, Z. M. Phys. Chem. Chem. Phys. 2015, 17, 2438.
[23] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Nakajima, M. T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M, Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
[24] Shi, Q. H.; Peng, Q.; Sun, S. R.; Shuai, Z. G. Acta Chim. Sinica 2013, 71, 884. (史清华, 彭谦, 孙少瑞, 帅志刚, 化学学报, 2013, 71, 884.)
[25] Ma, M. S; Zou, L. Y.; Li, Y.; Ren, A. M.; Feng, J. K. Org. Electron. 2015, 22, 180.
[26] Zhang, J. P.; Jin, L.; Zhang, H. X. Acta Phys.-Chim. Sin. 2011, 27, 1089. (张建坡, 金丽, 张红星, 物理化学学报, 2011, 27, 1089.)
[27] Zhang, J. P.; Jin, L.; Zhang, H. X.; Bai, F. Q. Chem. J. Chin. Univ. 2011, 32, 2885. (张建坡, 金丽, 张红星, 白福全, 高等学校化学学报, 2011, 32, 2885.)
[28] Li, Z. D.; Suo, B. B.; Zhang, Y.; Xiao, Y. L.; Liu, W. J. Mol. Phys. 2013, 111, 3741.
[29] Li, Z. D.; Xiao, Y. L.; Liu, W. J. J. Chem. Phys. 2014, 137, 154114.
[30] Li, Z. D.; Liu, W. J. J. Chem. Phys. 2014, 141, 014110.
[31] You, Y.; Park, S. Y. Dalton Trans. 2009, 8, 1267.
[32] Zhu, R.; Lin, J.; Wen, G. A.; Liu, S. J.; Wan, J. H.; Feng, J. C.; Fan, Q. L.; Zhong, G. Y.; Wei, W.; Huang, W. Chem. Lett. 2005, 34, 1668.
[33] Uoyamal, H.; Goushi, K.; Shizu1, K.; Nomura1, H.; Adachi, C. Nature 2012, 492, 234.
[34] Yao, L.; Zhang, S. T.; Wang, R.; Li, W. J.; Shen, F. Z.; Yang, B.; Ma, Y. G. Angew. Chem., Int. Ed. 2014, 53, 2119.
[35] Li, W. J. Y.; Pan, Y.; Xiao, R.; Peng, Q. M.; Zhang, S. T.; Ma, D. G.; Li, F.; Shen, F. Z.; Wang, Y. H.; Yang, B.; Ma, Y. G. Adv. Funct. Mater. 2014, 24, 1609.
/
〈 |
|
〉 |