Synthesis of Solution Processable Blue AIEgens and the Device Performance
Received date: 2016-07-28
Online published: 2016-08-24
Supported by
Project supported by the National Fundamental Key Research Program (No. 2013CB834701) and the National Natural Science Foundation of China (Nos. 21325416, 51573140, 6715751469).
By utilizing the special sp3 hybridization of tetraphenylmethane to break and control the intramolecular conjugation, and using silicon atom to replace the carbon atom in tetraphenylsilane, six molecules of C-4pTPE, C-4mTPE, C-4triPE, Si-4pTPE, Si-4mTPE, and Si-4triPE, were designed and successfully obtained, with tetraphenylethylene (TPE) and triphenylethylene (triPE) introduced to the core of tetraphenylmethane or tetraphenylsilane as rotors. These six molecules all possess typical aggregation induced emission (AIE) properties, they are all nearly nonemissive when readily dissolved in pure THF, but with the water fraction increasing, the PL intensity gradually increased. Due to their good AIE properties and thermal stability, they were fabricated in OLED devices by the solution process conveniently, with the maximum luminance (Lmax), maximum current efficiency (ηC,max), maximum power efficiency (ηp,max) and maximum external quantum efficiency (ηext,max) at 1730 cd·m-2, 2.21 cd·A-1, 0.77 lm·W-1 and 1.01%, respectively.
Yu Yun , Yang Jie , Ren Zichun , Xie Guohua , Li Qianqian , Li Zhen . Synthesis of Solution Processable Blue AIEgens and the Device Performance[J]. Acta Chimica Sinica, 2016 , 74(11) : 865 -870 . DOI: 10.6023/A16070372
[1] Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[2] Ma, Y. G.; Zhang, H.; Shen, J. C.; Che, C. Synth. Met. 1998, 94, 245.
[3] D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.
[4] Li, J. Y.; Ma, C. W.; Tang, J. X.; Lee, C. S.; Lee, S. T. Chem. Mater. 2005, 17, 615.
[5] Li, J.; Liu, D.; Li, Y.; Lee, C. S.; Kwong, H.; Lee, S. Chem. Mater. 2005, 17, 1208.
[6] Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
[7] Wu, W. S.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W. L.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J. Microelectron. J. 2004, 35, 343.
[8] Bernius, M. T.; Inbasekaran, M.; O'Brien, J. J.; Wu, W. Adv. Mater. 2000, 12, 1737.
[9] (a) Forster, T.; Kasper, K. Z. Phys. Chem.(Muenchen, Ger), 1954, 1, 275;
(b) Jakubiak, R.; Collision, C. J.; Wan, W. C.; Rothberg, L. J. Phys. Chem. A 1999, 103, 2394.
(c) Lemmer, U.; Heun, S.; Mahrt, R. F.; Schert, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Müllen, K.; Bassler, H. Chem. Phys. Lett. 1995, 240, 373.
[10] (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740;
(b) Qian, L. J.; Tong, B.; Zhi, J. G.; Yang, F.; Shen, J. B.; Shi, J. B.; Dong, Y. P. Acta Chim. Sinica 2008, 66, 1134(in Chinese). (钱立军, 佟斌, 支俊格, 杨帆, 申进波, 石建兵, 董宇平, 化学学报, 2008, 66, 1134.);
(c) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819(in Chinese). (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)
[11] (a) Yang, J.; Huang, J.; Li, Q.; Li, Z. J. Mater. Chem. C 2016, 4, 2663.
(b) Li, Z. Sci. China Chem. 2015, 58, 969.
(c) Li, Q.; Li, Z. Sci. China Chem. 2015, 58, 1800.
(d) Zhang, X.; Zhang, X.; Yang, B.; Wei, Y. Chin. J. Polym. Sci. 2014, 32, 1479.
(e) Wang, R.; Yuan, W.; Zhu, X. Chin. J. Polym. Sci. 2015, 33, 680.
(f) Wu, W.; Tang, R.; Li, Q.; Li, Z. Chem. Soc. Rev. 2015, 44, 3997.
[12] (a) Tung, Y. J.; Nago, T.; Hack, M.; Brown, J.; Koide, N.; Nagara, Y.; Kato, Y.; Ito, H. Dig. Tech. Pap.-Soc. Inf. Disp. Int. Symp 2004, 35, 48.
(b) Lee, M. T.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Adv. Mater. 2005, 17, 2493.
(c) Lee, S. J.; Park, J. S.; Yoon, K. J.; Kim, Y. I.; Jin, S. H.; Kang, S. K.; Gal, Y. S.; Kang, S.; Lee, J. Y.; Kang, J. W.; Lee, S. H.; Park, H. D.; Kim, J. J. Adv. Funct. Mater. 2008, 18, 3922.
(d) Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem., Int. Ed. 2008, 47, 581.
(e) Chen, C. H.; Huang, W. S.; Lai, M. Y.; Tsao, W. C.; Lin, J. T.; Wu, Y. H.; Ke, T. H.; Chen, L. Y.; Wu, C. C. Adv. Funct. Mater. 2009, 19, 2661.
(f) Zheng, C. J.; Wang, J.; Ye, J.; Lo, M. F.; Liu, X. K.; Fung, M. K.; Zhang, X. H.; Lee, C. S. Adv. Mater. 2013, 25, 2205.
[13] (a) Farinola, G. M.; Ragni, R. Chem. Soc. Rev. 2011, 40, 3467.
(b) Gather, M. C.; Köhnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233.
[14] (a) Kang, D. M.; Kang, J. W.; Park, J. W.; Jung, S. O.; Lee, S. H.; Park, H. D.; Kim, Y. H.; Shun, S. C.; Kim, J. J.; Kwon, S. K. Adv. Mater. 2008, 20, 2003.
(b) Park, T. J.; Jeon, W. S.; Park, J. J.; Kim, S. Y.; Lee, Y. K.; Jang, J.; Kwon, J. H.; Pode, R. Appl. Phys. Lett. 2008, 92, 113308.
[15] (a) Yang, J.; Huang, J.; Sun, N.; Peng, Q.; Li, Q. Q.; Ma, D. G.; Li, Z. Chem. Eur. J. 2015, 21, 1.
(b) Huang, J.; Tang, R. L.; Zhang, T.; Li, Q. Q.; Yu, G.; Xie, S. Y.; Liu, Y. Q.; Ye, S. H.; Qin, J. G.; Li, Z. Chem. Eur. J. 2014, 20, 5317.
(c) Huang, J.; Sun, N.; Dong, Y.; Tang, R.; Lu, P.; Cai, P.; Li, Q.; Ma, D.; Qin, J.; Li, Z. Adv. Funct. Mater. 2013, 23, 2329.
(d) Huang, J.; Sun, N.; Yang, J.; Tang, R.; Li, Q.; Ma, D.; Li, Z. Adv. Funct. Mater. 2014, 24, 7645.
(e) Huang, J.; Yang, M.; Yang, J.; Tang, R.; Ye, S.; Li, Q.; Li, Z. Org. Chem. Front. 2015, 2, 1608.
[16] Wang, S. J.; Oldham Jr., W. J.; Hudack Jr., R. A.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 5695.
[17] Parker, C. A.; Rees, W. T. Analyst 1960, 85, 587.
/
〈 |
|
〉 |