Review

Resistive Memory Materials Based on Transition-Metal Complexes

  • Cui Bin-Bin ,
  • Tang Jian-Hong ,
  • Zhong Yu-Wu
Expand
  • a CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049

Received date: 2016-08-02

  Online published: 2016-09-06

Supported by

Project supported by the National Natural Science Foundation of China (grants 21271176, 21472196, 21521062, and 21501183), the Ministry of Science and Technology of China (grant 2012YQ120060), and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB 12010400).

Abstract

A resistive memory operates as an electrical switch between high and low conductivity states (or multistates) in response to an external electric field. Due to the high capacity, high flexibility, good scalability, low cost, and low power consumption, resistive memory is promising for the next-generation high-density data storage. In addition to inorganic metal oxides, carbon nanomaterials, organic small molecular and polymeric semiconductor materials, transition-metal complexes have recently received much attention as active materials for resistive memory. In this contribution, the applications of transition-metal complexes in resistive memory reported to date are summarized and discussed, mainly including group VⅢ [Fe(Ⅱ), Ru(Ⅱ), Co(Ⅲ), Rh(Ⅲ), Ir(Ⅲ), and Pt(Ⅱ) complexes], group IB and ⅡB [Cu(Ⅱ), Au(Ⅲ), and Zn(Ⅱ) complexes], and lanthanide complexes [mainly Eu(Ⅲ) complexes]. The memory behavior and mechanism of these materials will be discussed. Transition-metal complexes often possess well-defined and reversible redox processes. The frontier energy levels and gaps can be easily modulated by changing the structures of ligands and metal species, which is beneficial for generating electrical bistates or multistates when they are used in resistive memory devices. These features make transition-metal complexes potentially useful as memory materials in practical applications.

Cite this article

Cui Bin-Bin , Tang Jian-Hong , Zhong Yu-Wu . Resistive Memory Materials Based on Transition-Metal Complexes[J]. Acta Chimica Sinica, 2016 , 74(9) : 726 -733 . DOI: 10.6023/A16080384

References

[1] Chua, L. O. IEEE Trans. Circuit Theory 1971, 18, 507.
[2] (a) Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. Nature 2008, 453, 80.
(b) Ouyang, J.; Chu, C.-W.; Szmanda, C. R.; Ma, L.; Yang, Y. Nat. Mater. 2004, 3, 918.
(c) Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R. Nature 2003, 426, 166.
(d) Waser, R.; Aono, M. Nat. Mater. 2007, 6, 833.
[3] (a) Ling, Q. D.; Liaw, D. J.; Zhu, C.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. Prog. Polym. Sci. 2008, 33, 917.
(b) Chen, Y.; Liu, G.; Wang, C.; Zhang, W.; Li, R.-W.; Wang, L. Mater. Horiz. 2014, 1, 489.
(c) Liu, C.-L.; Chen, W.-C. Polym. Chem. 2011, 2, 2169.
[4] Lin, W.-P.; Liu, S.-J.; Gong, T.; Zhao, Q.; Huang, W. Adv. Mater. 2014, 26, 570.
[5] (a) Zhu, X.; Su, W.; Liu, Y.; Hu, B.; Pan, L.; Lu, W.; Zhang, J.; Li, R.-W. Adv. Mater. 2012, 24, 3941.
(b) Liang, L.; Li, K.; Xiao, C.; Fan, S.; Liu, J.; Zhang, W.; Xu, W.; Tong, W.; Liao, J.; Zhou, Y.; Ye, B.; Xie, Y. J. Am. Chem. Soc. 2015, 137, 3102.
[6] Wang, X.; Xie, W.; Xu, J.-B. Adv. Mater. 2014, 26, 5496.
[7] (a) Ma, Y.; Cao, X.; Li, G.; Wen, Y.; Yang, Y.; Wang, J.; Song, Y. Adv. Funct. Mater. 2010, 20, 803.
(b) Li, G.; Zheng, K.; Wang, C.; Leck, K. S.; Hu, F.; Sun, X. W.; Zhang, Q. ACS Appl. Mater. Interfaces 2013, 5, 6458.
(c) Wu, H.-C.; Zhang, J.; Bo, Z.; Chen, W.-C. Chem. Commun. 2015, 51, 14179.
(d) Su, Z.; Zhuang, H.; Liu, H.; Li, H.; Xu, Q.; Lu, J.; Wang, L. J. Mater. Chem. C 2014, 2, 5673.
[8] (a) Ko, Y.-G.; Kim, D. M.; Kim, K.; Jung, S.; Wi, D.; Michinobu, T.; Ree, M. ACS Appl. Mater. Interfaces 2014, 6, 8415.
(b) Wu, X.; Wu, Y.; Zhang, C.; Niu, H.; Lei, L.; Qin, C.; Wang, C.; Bai, X.; Wang, W. RSC Adv. 2015, 5, 58843.
(c) Lin, L.-C.; Ye, H.-J.; Chen, C.-J.; Tsai, C.-L.; Liou, G.-S. Chem. Commun. 2014, 50, 13917.
(d) Zhou, Z.; Qu, L.; Yang, T.; Wen, J.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J. RSC Adv. 2016, 6, 52798.
[9] (a) Li, H.; Xu, Q.; Li, N.; Sun, R.; Ge, J.; Lu, J.; Gu, H.; Yan, F. J. Am. Chem. Soc. 2010, 132, 5542.
(b) Gu, P.-Y.; Zhou, F.; Gao, J.; Li, G.; Wang, C.; Xu, Q.-F.; Zhang, Q.; Lu, J.-M. J. Am. Chem. Soc. 2013, 135, 14086.
(c) Gu, Q.-F.; He, J.-H.; Chen, D.-Y.; Dong, H.-L.; Li, Y.-Y.; Li, H.; Xu, Q.-F.; Lu, J.-M. Adv. Mater. 2015, 27, 5968.
(d) Poon, C.-T.; Wu, D.; Lam, W. H.; Yam, V. W.-W. Angew. Chem. Int. Ed. 2015, 54, 10569.
[10] (a) Zhong, Y.-W.; Gong, Z.-L.; Shao, J.-Y.; Yao, J. Coord. Chem. Rev. 2016, 312, 22.
(b) Gong, Z.-L.; Shao, J.-Y.; Zhong, Y.-W. J. Electrochem. 2016, 22, 244 (龚忠亮, 邵将洋, 钟羽武, 电化学, 2016, 22, 244).
(c) Kong, D.-D.; Xue, L.-S.; Jang, R.; Liu, B.; Meng, X.-G.; Jin, S.; Qu, Y.-P.; Hao, X.; Liu, S.-H. Chem. Eur. J. 2015, 21, 9895.
(d) Sarkar, B.; Schweinfurth, D.; Deibel, D.; Weisser, F. Coord. Chem. Rev. 2015, 293, 250.
[11] (a) Zhong, Y.-W.; Yao, C.-J.; Nie, H.-J. Coord. Chem. Rev. 2013, 257, 1357.
(b) Zhang, K. Y.; Liu, S.; Zhao, Q.; Huang, W. Coord. Chem. Rev. 2016, 319, 180.
(c) Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. Chem. Soc. Rev. 2015, 44, 8904.
(d) Gong, Z.-L.; Zhong, Y.-W. Sci. China Chem. 2015, 58, 1444.
(e) Wang, D.; Dong, H.; Zhang, X.; Wu, Y.; Shen, S.; Jiao, B.; Wu, Z.; Gao, M.; Wang, G. Sci. China Chem. 2015, 58, 658.
(f) Cui, C.; Zhang, Y.; Choy, W. C. H.; Li, H.; Wong, W.-Y. Sci. China Chem. 2015, 58, 347.
[12] (a) Lu, J.-M.; Xu, Q.-F.; Li, H.; Li, N.-J.; He, J.-H.; Chen, D.-Y.; Wang, L.-H. Chin. Polym. Bull. 2015, (10), 25 (路健美, 徐庆锋, 李华, 李娜君, 贺竞辉, 陈东赟, 王丽华, 高分子通报, 2015, (10), 25).
(b) Wang, C.; Gu, P.; Hu, B.; Zhang, Q. J. Mater. Chem. C 2015, 3, 10055.
[13] (a) Li, C.; Fan, W.; Straus, D. A.; Lei, B.; Asano, S.; Zhang, D.; Han, J.; Meyyappan, M.; Zhou, C. J. Am. Chem. Soc. 2004, 126, 7750.
(b) Seo, K.; Konchenko, A. V.; Lee, J.; Bang, G. S.; Lee, H. J. Am. Chem. Soc. 2008, 130, 2553.
[14] Choi, T. L.; Lee, K. H.; Joo, W. J.; Lee, S.; Lee, T. W.; Chae, M. Y. J. Am. Chem. Soc. 2007, 129, 9842.
[15] Xiang, J.; Wang, T.-K.; Zhao, Q.; Huang, W.; Ho, C.-L.; Wong, W.-Y. J. Mater. Chem. C 2016, 4, 921.
[16] Basudev, P.; Samir, D. Chem. Mater. 2008, 20, 1209.
[17] Cui, B.-B.; Mao, Z.; Chen, Y.; Zhong, Y.-W.; Yu, G.; Zhan, C.; Yao, J. Chem. Sci. 2015, 6, 1308.
[18] Bandyopadhyay, A.; Sahu, S.; Higuchi, M. J. Am. Chem. Soc. 2011, 133, 1168.
[19] (a) Paul, N. D.; Rana, U.; Goswami, S.; Mondal, T. K.; Goswami, S. J. Am. Chem. Soc. 2012, 134, 6520.
(b) Goswami, S.; Sengupta, D.; Paul, N. D.; Mondal, T. K.; Goswami, S. Chem. Eur. J. 2014, 20, 6103.
[20] (a) Wang, F.; Tao, Y.; Huang, W. Acta Chim. Sinica 2015, 73, 9 (王芳芳, 陶友田, 黄维, 化学学报, 2015, 73, 9).
(b) Liu, C.; Mao, L.; Jia, H.; Liao, Z.; Wang, H.; Mi, B.; Gao, Z. Sci. China Chem. 2015, 58, 640.
[21] (a) Liu, S.-J.; Lin, Z.-H.; Zhao, Q.; Ma, Y.; Shi, H.-F.; Yi, M.-D.; Ling, Q.-D.; Fan, Q.-L.; Zhu, C.-X.; Kang, E.-T.; Huang, W. Adv. Funct. Mater. 2011, 21, 979.
(b) Liu, S.-J.; Wang, P.; Zhao, Q.; Yang, H.-Y.; Wong, J.; Sun, H.-B.; Dong, X.-C.; Lin, W.-P.; Huang, W. Adv. Mater. 2012, 24, 2901.
(c) Liu, S.-J.; Lin, W.-P.; Yi, M.-D.; Xu, W.-J.; Tang, C.; Zhao, Q.; Ye, S.-H.; Liu, X.-M.; Huang, W. J. Mater. Chem. 2012, 22, 22964.
[22] Wang, P.; Liu, S.-J.; Lin, Z.-H.; Dong, X.-C.; Zhao, Q.; Lin, W.-P.; Yi, M.-D.; Ye, S.-H.; Zhu, C.-X.; Huang, W. J. Mater. Chem. 2012, 22, 9576.
[23] Choi, S.; Hong, S.-H.; Cho, S. H.; Park, S.; Park, S.-M.; Kim, O.; Ree, M. Adv. Mater. 2008, 20, 1766.
[24] Ma, Y.; Chen, H.-X.; Zhou, F.; Li, H.; Dong, H.; Li, Y.-Y.; Hu, Z.-J.; Xu, Q.-F.; Lu, J.-M. Nanoscale 2015, 7, 7659.
[25] (a) Au, V. K.-M.; Wu, D.; Yam, V. W.-W. J. Am. Chem. Soc. 2015, 137, 4654.
(b) Hong, E. Y.-H.; Poon, C.-T.; Yam, V. W.-W. J. Am. Chem. Soc. 2016, 138, 6368.
[26] Lin, J.; Zheng, M.; Chen, J.; Gao, X.; Ma, D. Inorg. Chem. 2007, 46, 341.
[27] (a) Xu, G.; Li, J.; Chen, Z. Acta Chim. Sinica 2014, 72, 667 (徐广涛, 李佳, 陈忠宁, 化学学报, 2014, 72, 667).
(b) Ren, M.; Zheng, L.-M. Acta Chim. Sinica 2015, 73, 1091 (任旻, 郑丽敏, 化学学报,2015, 73, 1091).
(c) Nie, K.; Liu, C.; Zhang, Y.; Yao, Y. Sci. China Chem. 2015, 58, 1451.
(d) Peng, Y.; Li, Z.; Liu, Z.; Yuan, Q. Sci. China Chem. 2015, 58, 1159.
[28] (a) Ling, Q.; Song, Y.; Ding, S. J.; Zhu, C.; Chan, D. S. H.; Kwong, D.-L.; Kang, E.-T.; Neoh, K.-G. Adv. Mater. 2005, 17, 455.
(b) Ling, Q.-D.; Wang, W.; Song, Y.; Zhu, C.-X.; Chan, D. S. H.; Kang, E.-T.; Neoh, K.-G. J. Phys. Chem. B 2006, 110, 23995.
[29] (a) Tan, Y. P.; Song, Y.; Teo, E. Y. H.; Ling, Q. D.; Lim, S. L.; Lo, P. G. Q.; Chan, D. S. H.; Kang, E.-T.; Zhu, C. J. Electrochem. Soc. 2008, 155, H17.
(b) Wang, B.; Fang, J.; Li, B.; You, H.; Ma, D.; Hong, Z.; Li, W.; Su, Z. Thin Solid Films 2008, 516, 3123.
[30] Fang, J.; You, H.; Chen, J.; Lin, J.; Ma, D. Inorg. Chem. 2006, 45, 3701.

Outlines

/