Perspective

Photo-induced Catalytic Asymmetric Free Radical Reactions

  • Wang Dehong ,
  • Zhang Long ,
  • Luo Sanzhong
Expand
  • a Key Laboratory of Molecular Recognition and Functions, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2016-08-16

  Revised date: 2016-09-13

  Online published: 2016-09-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572232, 21390400).

Abstract

Enantioselective control of free radical reactions has eluded organic chemists for decades. Echoed with the renaissance of photo-induced processes, or so called photocatalysis or photoredox catalysis in organic synthesis, photo-induced organic radical chemistry has regained its prominence in developing catalytic asymmetric radical reaction. The generally mild conditions inherited with photochemistry, particularly visible light photo-processes, have allowed for controllable generation of free radicals as well as the subsequent bond formations. The past five years have witnessed dramatic advances in exploring photo-induced catalytic asymmetric free radical reactions, and enormous potentials along this line are envisaged. This perspective gives a brief summary on the important advances in this field. Accordingly, the major advances are classified based on different radical species including α-amino/oxyl radicals, radicals generated from enones and its analogues, benzyl radicals, α-carbonyl radicals, polyhalogenated alkyl radicals and nitrogen radicals. Brief discussion of mechanism is presented whenever relevant.

Cite this article

Wang Dehong , Zhang Long , Luo Sanzhong . Photo-induced Catalytic Asymmetric Free Radical Reactions[J]. Acta Chimica Sinica, 2017 , 75(1) : 22 -33 . DOI: 10.6023/A16080418

References

[1] (a) Parsons, A. F. An Introduction to Free Radical Chemistry, Wiley-Blackwell, Hoboken, New Jersey, 2000.
(b) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
(c) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275. (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)
[2] (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
(b) Zimmerman, J.; Sibi, M. P. Enantioselective Radical Reactions. In Radicals in Synthesis I, Springer, Berlin, Heidelberg, 2006, pp. 107~162.
[3] (a) Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. Science 2007, 316, 582.
(b) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 9358.
(c) Jui, N. T.; Garber, J. A.; Finelli, F. G.; MacMillan, D. W. J. Am. Chem. Soc. 2012, 134, 11400.
(d) Pham, P. V.; Ashton, K.; MacMillan, D. W. Chem. Sci. 2011, 2, 1470.
(e) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.; MacMillan, D. W. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20648.
(f) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. Angew. Chem. Int. Ed. 2010, 49, 6106.
(g) Jui, N. T.; Lee, E. C.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10015.
(h) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 10012.
(i) Devery, J. J.; Conrad, J. C.; MacMillan, D. W.; Flowers, R. A. J. Am. Chem. Soc. 2010, 132, 6106.
(j) Rendler, S.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 5027.
(k) Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11332.
(l) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 11640.
(m) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. Angew. Chem. Int. Ed. 2009, 48, 5121.
(n) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 16494.
(o) Kim, H.; MacMillan, D. W. J. Am. Chem. Soc. 2008, 130, 398.
(p) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. J. Am. Chem. Soc. 2007, 129, 7004.
[4] For selected reviews, see:(a) Peñ-López, M.; Rosas-Hernández, A.; Beller, M. Angew. Chem. Int. Ed. 2015, 54, 5006.
(b) Hopkinson, M. N.; Sahoo, B.; Li, J. L.; Glorius, F. Chem. Eur. J. 2014, 20, 3874.
(c) Hari, D. P.; König, B. Angew. Chem. Int. Ed. 2013, 52, 4734.
(d) Xuan, J.; Lu, L. Q.; Chen, J. R.; Xiao, W. J. Eur. J. Org. Chem. 2013, 6755.
(e) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
(f) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev. 2013, 113, 5322.
(g) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
(h) Xuan, J.; Xiao, W. J. Angew. Chem. Int. Ed. 2012, 51, 6828.
(i) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
(j) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
(k) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(l) Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
[5] Ruiz Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.
[6] Lenhart, D.; Bauer, A.; Pöthig, A.; Bach, T. Chem. Eur. J. 2016, 22, 6519.
[7] Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139.
[8] Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218.
[9] Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768.
[10] (a) Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685.
(b) Ma, J.; Harms, K.; Meggers, E. Chem. Commun. 2016, 52, 10183.
[11] Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. J. Am. Chem. Soc. 2016, 138, 1832.
[12] Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735.
[13] (a) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.
(b) Amador, A. G.; Sherbrook, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.
[14] Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. J. Am. Chem. Soc. 2010, 132, 13600.
[15] Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L. A.; Meggers, E. Nature 2014, 515, 100.
[16] (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
(b) Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438.
[17] Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[18] (a) Nicewicz, D. A.; MacMillan, D. W. Science, 2008, 322, 77.
(b) Zhu, Y.; Zhang, L.; Luo, S. J. Am. Chem. Soc. 2014, 136, 14642.
[19] Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120.
[20] Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
[21] Nagib, D. A.; Scott, M. E.; MacMillan, D. W. J. Am. Chem. Soc. 2009, 131, 10875.
[22] Huo, H.; Wang, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2015, 137, 9551.
[23] Wo?niak, ?.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678.
[24] (a) Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521.
(b) Shen, X.; Harms, K.; Marsch, M.; Meggers, E. Chem. Eur. J. 2016, 22, 9102.

Outlines

/