Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides
Received date: 2016-07-28
Revised date: 2016-09-20
Online published: 2016-09-27
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21272087, 21472058, 21472057, and 21232003), and the Youth Chen-Guang Project of Wuhan (No. 2015070404010180).
The 3,4-dihydroisoquinolinones are a privileged class of heterocyclic motifs and widely found in numerous biologically active compounds. Thus, the development of more efficient and practical methods for their synthesis is highly desirable. Traditional methods are typically focused on transition-metal catalyzed C-H functionalization. Inspired by the recent process of the visible light photocatalytic generation and exploration of N-radicals in organic synthesis, our group in 2014 developed a visible light-induced photocatalytic strategy for direct conversion of the N-H bonds of β,γ-unsaturated hydrazones into N-centred radicals for the first time, and used them in intramolecular radical hydroamination, enabling efficient synthesis of 4,5-dihydropyrazole derivatives. By employing suitable additives or changing reaction parameters, we also successfully achieved highly regioselective 6-endo N-radical cyclization and oxyamination reactions based on N-centred radicals, providing the valuable 1,6-dihydropyradazines, pyrazolines, and pyridazines in good yields. In the hope of extending such N-radical-mediated heterocycle synthesis further, we reported a transition-metal free and visible light photocatalytic N-radical-based intramolecular hydroamination of benzamides. The reaction provides a practical and efficient approach to various biologically important 3,4-dihydroisoquinolinones with generally high yields. Importantly, the continuous flow reaction could significantly shorten the reaction time and still give rise to satisfactory yield. The sunlight irradiation reaction and gram-scale reaction also highlighted the potential synthetic utility of this method. A general procedure for the reaction is as follows:EosinY Na (6.21 mg, 0.009 mmol), NaOH (14.4 mg, 0.36 mmol), amide 1 (0.3 mmol) were dissolved in MeOH (6.0 mL), then, the resulting mixture was degassed via a ‘freeze-pump-thaw’ procedure (3 times). After that, the resulting mixture was stirred at a distance of ca. 5 cm from 3 W blue LEDs (450~460 nm) at room temperature until the starting amides were consumed as monitored by TLC analysis. After concentration in vacuo, the reaction residue was purified by flash chromatography on silica gel[V(petroleum ether)/V(ethyl acetate)=5:1~2:1] directly to give the desired product.
Yu Xiaoye , Zhou Fan , Chen Jiarong , Xiao Wenjing . Visible Light Photocatalytic N-Radicalbased Intramolecular Hydroamination of Benzamides[J]. Acta Chimica Sinica, 2017 , 75(1) : 86 -91 . DOI: 10.6023/A16070367
[1] (a) Goldberg, D. US 2006276496, 2006[Chem. Abstr. 2006, 146, 1286266].
(b) Goldberg, D. US 2010190773, 2010[Chem. Abstr. 2006, 146, 1286266].
(c) Freeze, B. S. WO 20120051410, 2014[Chem. Abstr. 2012, 156, 573694].
(d) Freeze, B. S. US 2015148334, 2015[Chem. Abstr. 2012, 156, 573694].
(e) Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. J. Org. Chem. 2016, 81, 5256.
(f) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
[2] For selected reviews, see:(a) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.)
(b) Yuan, J.-W.; Liu, C.; Lei, A.-W. Chem. Commun. 2015, 51, 1394. For selected examples, see:
(c) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449.
(d) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
(e) Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, X. Q.; Wang, C. J. Am. Chem. Soc. 2013, 135, 4628.
(f) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.; Cramer, N. Chem. Eur. J. 2014, 20, 15409.
(g) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899.
(h) Hao, X.-Q.; Du, C.; Zhu, X.; Li, P.-X.; Zhang, J.-H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 3610.
[3] For selected reviews on the N-radical chemistry, see:(a) Zard, S. Z.; Chem. Soc. Rev. 2008, 37, 1603.
(b) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557.
(c) Hioe, J.; Šaki?, D.; Vr?ek, V.; Zipse, H. Org. Biomol. Chem. 2015, 13, 157.
[4] For selected examples, see:(a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573.
(b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.
(c) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.
(d) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.
(e) Zhu, M.-K.; Chen, Y.-C.; Loh, T. P. Chem. Eur. J. 2013, 19, 5250.
(f) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem. Int. Ed. 2014, 53, 3158.
(g) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.
[5] For selected reviews on the visible light photocatalysis, see:(a) Xuan, J.; Xiao, W.-J. Angew. Chem. Int. Ed. 2012, 51, 6828.
(b) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687.
(c) Prier, C. K.; Rankic, D. A.; Macmillan, D. W. Chem. Rev. 2013, 113, 5322.
(d) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387.
(e) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
(f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
(g) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632.
(h) Tan, F.; Xiao, W.-J. Acta Chim. Sinica 2015, 73, 85. (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
(i) Karkas, M. D.; Porco Jr., J. A.; Stephenson, C. R. Chem. Rev. 2016, 116, 9683.
(j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(k) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, doi:10. 1021/acs. accounts. 6b00254.
[6] For recent reviews, see:(a) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.
[7] For recent examples on the visible light-induced N-radical reactions, see:(a) Cecere, G.; Konig, C. M.; Alleva, J. L.; MacMillan, D. W. J. Am. Chem. Soc. 2013, 135, 11521.
(b) Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
(c) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R. J. Am. Chem. Soc. 2014, 136, 12217.
(d) Song, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Chem. Eur. J. 2014, 20, 14231.
(e) Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273.
(f) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.
(g) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem. Int. Ed. 2015, 54, 4055.
(h) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.
(i) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem. Int. Ed. 2015, 54, 14017.
(j) Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.; Sheikh, N. S.; Leonori, D. J. Am. Chem. Soc. 2016, 138, 8092.
(k) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.-M.; Lu, X.; Xu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 2226.
(l) Zhao, Y.; Huang, B.; Yang, C.; Xia, W. Org. Lett. 2016, 18, 3326.
(m) Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.
[8] Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 12163.
[9] (a) Hu, X.-Q.; Qi, X.; Chen, J.-R.; Zhao, Q.-Q.; Wei, Q.; Lan, Y.; Xiao, W.-J. Nat. Commun. 2016, 7, 11188.
(b) Hu, X.-Q.; Chen, J.; Chen, J.-R.; Yan, D.-M.; Xiao, W.-J. Chem. Eur. J. 2016, doi:10. 1002/chem. 201602597.
[10] Please see the Supporting Information for more details.
[11] For selected reviews, see:(a) Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025.
(b) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Eur. J. 2014, 20, 10562.
(c) Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. Isr. J. Chem. 2014, 54, 351.
[12] Yang, G.-Q.; Shen, C.-R.; Zhang, W.-B. Angew. Chem. Int. Ed. 2012, 51, 9141.
[13] (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
(b) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.
/
〈 |
|
〉 |