Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries
Received date: 2016-07-07
Revised date: 2016-09-30
Online published: 2016-10-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21322101, 21231005), Ministry of Education (No. 113016A) and 111 Project (No. B12015).
Recycling use is one of the energy and resource saving strategies to dispose depleted batteries, especially primary lithium batteries that employ electrode materials based on expensive and low-abundance elements. In this study, we report in detail the recycling use of discharged Li-AgVO3 primary battery for rechargeable Li-O2 battery. We demonstrate that the discharged Li-AgVO3 cell, in which metallic silver nanoparticles in-situ generated in the vanadium oxide nanowires cathode efficiently catalyze the oxygen reduction/evolution reactions (ORR/OER), can be resumed as rechargeable Li-O2 cells when they are exposed at O2 atmosphere. By controlling the discharge depths, we obtained different cathodes that were composed of vanadium oxide nanowires and silver nanoparticles. As the electrode was discharged to a lower voltage, more silver nanoparticles with larger particle size were distributed on the surface of vanadium oxides, as a result of the sequential reduction of Ag+ to Ag0 and V5+ to V4+. Specifically, the average size of formed Ag nanoparticles was 15 nm and 70 nm at ceased discharge voltage of 2.9 V and 2.0 V, respectively, while the formation of V4+ was observed at discharge voltage lower than 2.3 V. Electrochemical tests indicated that the Li-O2 cells assembled with the AgVO3 cathode discharged to 2.3 V (AgVO3-2.3) exhibited the highest specific capacity (9000 mAh·gcarbon-1), the lowest overpotential and robust cycling performance (up to 95 cycles at the current density of 300 mA·gcarbon-1). The remarkable electrochemical performance of the Li-O2 battery with the AgVO3-2.3 cathode is attributed to the optimization of amount, size and distribution of generated silver nanoparticles that contribute to high electronic conductivity and abundant active sites for the ORR/OER. A combined analysis of electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the AgVO3-2.3 cathode enables the reversible formation and decomposition of Li2O2 with lower charge transfer resistance on discharge and charge. The results presented here would provide new insight into the promising recycling application of depleted primary Li-AgVO3 batteries in rechargeable high-capacity Li-O2 batteries.
Li Ran , Lu Yanying , Lei Kaixiang , Li Fujun , Cheng Fangyi , Chen Jun . Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries[J]. Acta Chimica Sinica, 2017 , 75(2) : 199 -205 . DOI: 10.6023/A16070329
[1] Takeuchi, K. J.; Marschilok, A. C.; Davis, S. M.; Leising, R. A.; Takeuchi, E. S. Coord. Chem. Rev. 2001, 219, 283.
[2] Cheng, F.; Chen, J. J. Mater. Chem. 2011, 21, 9841.
[3] Han, C.; Pi, Y.; An, Q.; Mai, L.; Xie, J.; Xu, X.; Xu, L.; Zhao, Y. Nano Lett. 2012, 12, 4668.
[4] Liang, S.; Zhou, J.; Pan, A.; Li, Y.; Chen, T.; Tian, Z.; Ding, H. Mater. Lett. 2012, 74, 176.
[5] Zeng, H.; Wang, Q.; Rao, Y. RSC Adv. 2015, 5, 3011.
[6] Kang, D. H.; Chen, M.; Ogunseitan, O. A. Environ. Sci. Technol. 2013, 47, 5495.
[7] Liu, Q.; Xu, J.; Xu, D.; Zhang, X. Nat. Commun. 2015, 6, 7892.
[8] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.
[9] Sen, X.; Guo, Y.; Wan, L. Scientia Sinica Chimica 2011, 41, 1229.
[10] Zhang, Z.; Li, L.; Ren, Q.; Xu, Q.; Cao, B. Chin. J. Chem. 2016, 34, 631.
[11] Zhang, Y.; Li, Y.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Sci. China Tech. Sci. 2015, 58, 1809.
[12] Chen, J.; Cheng, F. Acc. Chem. Res. 2009, 42, 713.
[13] Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2, 830.
[14] Gu, D.; Zhang, C.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L. Acta Chim. Sinica 2012, 70, 2115. (顾大明, 张传明, 顾硕, 张音, 王余, 强亮生, 化学学报, 2012, 70, 2115.)
[15] Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. F. Energy Environ. Sci. 2012, 5, 9765.
[16] Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.
[17] Zhang, D.; Zhang, C. Z.; Mu, D. B.; Wu, B. R.; Wu, F. Prog. Chem. 2012, 24, 2472. (张栋, 张存中, 穆道斌, 吴伯荣, 吴锋, 化学进展, 2012, 24, 2472.)
[18] Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473. (程方益, 陈军, 化学学报, 2013, 71, 473.)
[19] Yang, F.; Liu, Q.; Xu, J.; Zhao, M.; Zhang, X. Chin. Sci. Bull. 2013, 58, 3199. (杨凤玉, 刘清朝, 徐吉静, 赵敏寿, 张新波, 科学通报, 2013, 58, 3199.)
[20] Jin, Q.; Pei, L; Hu, Y.; Du, J.; Han, X.; Cheng, F.; Chen, J. Acta Chim. Sinica 2014, 72, 920. (靳琪, 裴龙凯, 胡宇翔, 杜婧, 韩晓鹏, 程方益, 陈军, 化学学报, 2014, 72, 920.)
[21] Hu, Y.; Zhang, T.; Cheng, F.; Zhao, Q.; Han, X.; Chen, J. Angew. Chem. Int. Ed. 2015, 54, 4338.
[22] Zhang, S.; Li, W.; Li, C.; Chen, J. J. Phys. Chem. B 2006, 110, 24855.
[23] Bao, Q.; Bao, S.; Li, C. M.; Qi, X.; Pan, C.; Zang, J.; Wang, W.; Tang, D. Y. Chem. Mater. 2007, 19, 5965.
[24] Xu, Y.; Han, X.; Zheng, L.; Wei, S.; Xie, Y. Dalton Trans. 2011, 40, 10751.
[25] Kirshenbaum, K.; Bock, D. C.; Lee, C. Y.; Zhong, Z.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Science 2015, 347, 149.
[26] Wittmaier, D.; Cañas, N. A.; Biswas, I.; Friedrich, K. A. Adv. Energy Mater. 2015, 5, 1500763.
[27] Zhang, D.; Zhang, C.; Mu, D.; Wu, B.; Wu, F. Acta Chim. Sinica 2013, 71, 1101. (张栋, 张存中, 穆道斌, 吴伯荣, 吴峰, 化学学报, 2013, 71, 1101.)
[28] Kumar, S.; Selvaraj, C.; Scanlon, L. G.; Munichandraiah, N. Phys. Chem. Chem. Phys. 2014, 16, 22830.
[29] Cui, Q.; Zhang, Y.; Peng, Z. Chem. Res. Chin. Univ. 2016, 32, 106.
[30] Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S. Nat. Commun. 2014, 5, 4895.
[31] Park, J. B.; Luo, X.; Lu, J.; Shin, C. D.; Yoon, C. S.; Amine, K.; Sun, Y. K. J. Phys. Chem. C 2015, 119, 15036.
[32] Rozier, P.; Savariault, J. M.; Galy, J. J. Solid State Chem. 1996, 122, 303.
[33] Song, J.; Lin, Y.; Yao, H.; Fan, F.; Li, X.; Yu, S. ACS Nano 2009, 3, 653.
[34] Lim, S. H.; Kim, B. K.; Yoon, W. Y. J. Appl. Electrochem. 2012, 42, 1045.
[35] Li, F.; Tang, D.-M.; Zhang, T.; Liao, K.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. Adv. Energy Mater. 2015, 5, 1500294.
[36] Cui, Q.; Zhang, Y.; Ma, S.; Peng, Z. Sci. Bull. 2015, 60, 1227.
[37] Liu, Q.; Jiang, Y.; Xu, J.; Xu, D.; Chang, Z.; Yin, Y.; Liu, W.; Zhang, X. Nano Res. 2015, 8, 576.
[38] Shao, X.; Zhang, T.; Wen, Z. Chin. J. Chem. 2017, 35, 35.
[39] Jiang, J.; Liu, X.; Zhao, S.; He, P.; Zhou, H. Acta Chim. Sinica 2014, 72, 417. (蒋颉, 刘晓飞, 赵世勇, 何平, 周豪慎, 化学学报, 2014, 72, 417.)
/
〈 |
|
〉 |